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Abstract. We present approaches for calculating the precise orders of the algebraic K-groups K4n−2(OK) for

a totally real abelian K. Along the way, we also establish a formula connecting the order of K4n−2(OE) of a

totally real p-elementary field E to its intermediate cyclic p-degree fields. Additionally, we have compiled a list

of values pertaining to these K-groups. Given the substantial space that these data would occupy, the list has

not been incorporated into the paper. We encourage interested readers to consult the supplement document or

the arXiv version of the paper, where these compiled list of values can be found.

1. Introduction

For a ring R, we let Ki(R) denote the algebraic K-groups of R in the sense of Quillen [15]. Thanks to the

pioneering work of Quillen [15], Garland [7], and Borel [2], we now know that the even K-groups of the ring of

integers of a number field are finite. However, these foundational results provide limited insight into the precise

orders of these groups. It was the conjecture proposed by Birch and Tate that initially provided an approach

to understanding the order of K2(OF ) by evaluating the Dedekind zeta function of the field F at s = −1.

This conjecture was later generalized by Lichtenbaum [11, 12] to include the higher even K-groups. Coates

[6] then provided a crucial link by suggesting that this conjecture could be attacked using the main conjecture

of Iwasawa theory [9], an insight that has been pivotal in establishing the conjecture for totally real abelian

fields and forms the backbone of our computational approaches. Since then, significant progress has been made

towards establishing this conjecture, particularly notable in the case of a totally real abelian field.

Building on these conjectures, Browkin and his collaborators [3, 4, 5] have gone a long way into computing

the precise order of K2(OF ) for quadratic fields and specific classes of cubic fields (also see the work of Zhou

[26]). The primary objective of this paper is to continue this line of study by exploring the computation of the

order of higher even K-groups, specifically K4k−2(OF ). More precisely, we discuss three different approaches

for calculating the order of higher even K-groups, with each being particularly suited to certain types of number

fields. The primary difference between these methods lies in the technique used to compute the special values of

the Dedekind zeta function. Although most software tools offer built-in functions for numerical approximations

of these values, our objective is to compute them exactly as fractions.

Our first approach applies in principle to all totally real abelian fields F . Leveraging the Artin formalism for

L-functions, we establish a connection between the value ζF (1−2k) and a suitable product involving generalized
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Bernoulli numbers. Subsequently, we proceed to compute each of these generalized Bernoulli numbers individ-

ually. For this step, the associated Dirichlet character must be manually inputted from the LMFDB to ensure

a precise fractional computation. We demonstrate this entire procedure in the body of the paper through a

concrete example (see Appendix B). The second method is specifically for the real quadratic fields and is based

on a formula of Siegel-Zagier. For this, we provide a simplified approach using Siegel-Zagier’s formula and also

offer a faster method to calculate wj(F ), improving efficiency without compromising on obtaining exact values.

This will be elaborated upon in Section 3.

The third approach is specifically tailored for a p-elementary totally real abelian field E, in which the Galois

group Gal(E/Q) is isomorphic to (Z/pZ)⊕n for some prime p and positive integer n. The key to this approach

is the following theorem on which it relies.

Theorem 1.1 (Theorem 4.1). Let p be a prime and n an integer ≥ 2. Suppose that E is a totally real abelian

extension of Q with Galois group G = Gal(E/Q) ∼= (Z/pZ)⊕n. Let K1,K2, . . . ,K pn−1
p−1

denote all the p-degree

extensions of Q contained in E. Then we have the following equality

|K4k−2(OE)| =
1

|K4k−2(Z)|
pn−p
p−1

pn−1
p−1󰁜

j=1

|K4k−2(OKj
)|.

The proof of the theorem will be given in Section 4. From a computational point of view, this result is rather

advantageous to have. For instance, if we want to compute the size of K4n−2-groups of the ring of integers of

Q(
√
2,
√
3,
√
5), it suffices to compute those for the intermediate quadratic fields Q(

√
2), Q(

√
3), Q(

√
5), Q(

√
6),

Q(
√
10), Q(

√
15),Q(

√
30), as well as for Q. After obtaining these values, we can simply plug them into the

formula provided by the aforementioned theorem.

1.1. Potential direction for future research.

• Our results are promising, showing feasibility for selected classes of fields of larger degrees, as evidenced

by our comprehensive compilation of K-group values, which extends over nearly 90 pages (omitted from

the main text but available in the arXiv version). We hope to continue this line of study and extend

our calculations to more extensive classes of number fields in a future work.

• It is natural to ask what we can do with the comprehensive collection of K-groups values obtained.

One direction we hope to study in the near future is to examine the Galois module structure of the

K-groups as module over the Galois group of the number field relative to Q building on our present

numerical data. To the best knowledge of the authors, while the existing literature already contains a

substantial amount of theoretical research (with on-going advancement made even now) on this topic,

when it comes to numerical computation or specific methods determination in this regard, we have yet

come across any relevant studies.
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discussions that took place during the paper’s preparation. Part of this research was conducted during the first
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University. We would like to express our appreciation to both universities for their warm hospitality. We are
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2. K-groups and Dedekind zeta function

We begin with a brief and quick review of the definition of the higher K-groups. Let R be a ring with identity.

For each integer m ≥ 1, denote by GLm(R) the group of invertible m×m matrices with entries in R. We then

set GL(R) = lim−→
m

GLm(R), where the transition map GLm(R) −→ GLm+1(R) is given by

A 󰀁→
󰀣
A 0

0 1

󰀤
.

Let BGL(R) be the classifying space of the group GL(R), i.e., BGL(R) is an Eilenberg-MacLane space of type

(GL(R), 1) in the sense of [18, Section 8.1]. Up to homotopy equivalence, this space is characterized by the

property that it is path-connected with homotopy groups

πn

󰀃
BGL(R)

󰀄 ∼=

󰀫
GL(R), for n = 1,

0, for n ≥ 2.

From the space BGL(R), one obtains a new space, denoted by BGL(R)+, via the +-construction of Quillen (see

[14, 15]). The higher K-groups Kn(R) are then defined by

Kn(R) := πn

󰀃
BGL(R)+

󰀄
.

It’s well-known that Quillen’s construction recovers the classical K1-groups of Bass and K2-groups of Milnor

(for instance, see [23, Chapter IV]).

In this paper, we are interested in the K-groups of the ring OF , where OF is the ring of integers of a number

field F . As a start, we recall the following fundamental results of Quillen and Borel.

Theorem 2.1. The groups Kn(OF ) are finitely generated for all n ≥ 1. Furthermore, one has

rankZ
󰀃
Kn(OF )

󰀄
=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

r1(F ) + r2(F ), if n ≡ 1 (mod 4),

r2(F ), if n ≡ 3 (mod 4),

0, if n is even.

Here r1(F ) (resp., r2(F )) is the number of real embeddings (resp., number of pairs of complex embeddings) of

the number field F .

Proof. Quillen [15] was the first to establish that these K-groups are finitely generated. Subsequently, calcula-

tions of Borel [2] confirmed the ranks of the K-groups as stated in the theorem. We should also mention that

prior to the works of Qullen and Borel, the finiteness of K2(OF ) has been proven by Garland [7]. □

Unfortunately, the results of Quillen and Borel do not provide a means to determine the exact order of the

even K-groups K2i(OF ). It was only due to the remarkable insight of Birch, Tate and Lichtenbaum [11, 12]

that one can hope to understand these orders via special values of Dedekind zeta function, a concept we will

now outline briefly. Let ζF (s) be the Dedekind zeta function of F . This function, ζF (s), admits an analytic

continuation to the whole complex plane, with the exception of a simple pole at s = 1. Consequently, it makes



4 MENG FAI LIM AND CHAO QIN

sense to speak of ζF (1 − 2k) for a positive integer k. Thanks to the collective gallant efforts of numerous

mathematicians, we have the following.

Theorem 2.2. Let F be a totally real abelian number field of degree r (= r1(F )). Then for every integer k ≥ 1,

we have

ζF (1− 2k) = (−1)kr2r
|K4k−2(OF )|
|K4k−1(OF )|

.

Proof. Lichtenbaum [11] first formulated this conjecture up to a power of 2. Subsequently, the work of Coates

[6] suggested that one might possibly attack this conjecture via the main conjecture of Iwasawa [9]. Building

on this insight, Bayer and Neukirch [1] showed that the main conjecture of Iwasawa implies a cohomological

version of Lichtenbaum’s conjecture (for a detailed exposition of this cohomological version, readers are referred

to [1]). Notably, this cohomological formulation is equivalent to the K-theoretical version, a connection estab-

lished by the Quillen-Lichtenbaum conjecture. This conjecture is now a theorem, being a consequence of the

groundbreaking work of Rost-Voevodsky ([20]; see also Rognes-Weibel [16]). Prior to these developments, the

main conjecture of Iwasawa has already been proven by by Mazur-Wiles [13] and Wiles [24]. □

The value |K4k−1(OF )| can be described rather easily. Let µ∞ be the group of all the roots of unity of F̄ ,

where F̄ is the algebraic closure of F . For an integer j ≥ 1, we write µ⊗j
∞ for the j-fold tensor product of µ∞

with Gal(F̄ /F ) acting diagonally. Set wj(F ) to be the order of (µ⊗j
∞ )Gal(F̄ /F ). The following gives a relation of

|K4k−1(OF )| in terms of these values.

Theorem 2.3. Let F be a totally real abelian number field of degree r. Then for every integer k ≥ 1, we have

󰀏󰀏K4k−1(OF )
󰀏󰀏 =

󰀻
󰀿

󰀽
2rw2k(F ), if k is odd,

w2k(F ), if k is even.

Proof. See [23, Chap. VI, Theorem 9.5]. □

Combining the above theorems, we have the following observation.

Corollary 2.4. Let F be a totally real abelian number field of degree r. Then for every integer k ≥ 1, we have

󰀏󰀏K4k−2(OF )
󰀏󰀏 =

󰀻
󰁁󰀿

󰁁󰀽

(−1)rw2k(F )ζF (1− 2k), if k is odd,

1

2r
w2k(F )ζF (1− 2k), if k is even.

In principle, the values of w2k(F ) can be determined rather easily (for instances, see [23, Chap. VI, Propo-

sitions 2.2 and 2.3]). Consequently, the main challenge lies in calculating the values of ζF (1− 2k). For number

fields of small degree, these can be computed via bulit-in functions in mathematical software programs. How-

ever, even in the case of a real quadratic field, the computed values are not exact when the discriminant of

the real quadratic number field F becomes large. In this context, computing ζF (−19) often leads to a loss of

significant digits. In the subsequent discussion of the paper, we will outline strategies to circumvent this issue.

To begin with, we introduce the following approach that utilizes generalized Bernoulli numbers.
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Let F be an abelian totally real number field with Galois group G = Gal(F/Q). By Artin formalism, we

have

ζF (1− 2k) = ζ(1− 2k)
󰁜

χ ∕=χ0

L(χ, 1− 2k)

where χ runs through all the nontrivial characters of G. It’s well-known that

ζ(1− 2k) = −B2k

2k
and L(χ, 1− 2k) = −B2k,χ

2k

(for instance, see [21, Theorem 4.2]). The above therefore gives a way to compute the ζF (1−2k) via generalized

Bernoulli numbers. To see a specific example, we refer readers to the first listing in Appendix B.

3. Quadratic field

In this section, we shall describe a method (due to Siegel-Zagier) of computing the L-values for a totally real

quadratic field. To prepare for this, we need to introduce some further notations. For a given integer j ≥ 0 and

an ideal a of OF , we define

σj(a) =
󰁛

b|a

|O/b|j ,

where the sum is taken over all nonzero ideals b of OF that divide a. In the special case where OF coincides

with Z, we shall simplify the notation to σ(m) = σ(mZ). Note that in this context, we have

σj(m) =
󰁛

d|m

dj ,

where d runs through all the positive divisors of m. Furthermore, for integers j, k ≥ 1, we set

sFj (2k) =
󰁛

ν∈d−1

ν≫0
tr(ν)=j

σ2k−1

󰀃
(ν)d

󰀄
.

Here d = dF is the different of F and the sum is taken over all totally positive elements in d with trace j. With

these notation in hand, we can now state the following formula of Siegel.

Theorem 3.1 (Siegel). Let F be a totally real number field. Then for every integer k ≥ 1, we have

ζF (1− 2k) = 2|F :Q|
r󰁛

j=1

bj(2k|F : Q|)sFj (2k),

where the numbers bj(2k|F : Q|) are rational and depend only on 2k|F : Q|, and the integer r is given by

r =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

󰀗
k|F : Q|

6

󰀘
, if k|F : Q| ≡ 1 (mod 6),

󰀗
k|F : Q|

6

󰀘
+ 1, otherwise.

Remark 3.2. Some of the values of Siegel coefficients bj(m) for 4 ≤ m ≤ 40 can be found in [25, Table 1]. For

the convenience of the readers, we provide an approach to computing these terms following [17].
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For k = 4, 6, ..., we set

Gk(z) = 1− 2k

Bk

∞󰁛

n=1

σk−1(n)q
n

and

∆ = q

∞󰁜

n=1

(1− qn)24.

We then define

Th = G12r−h+2∆
−r,

where

r =

󰀻
󰀿

󰀽
[ h12 ] + 1, h ∕≡ 2 mod 12;

[ h12 ], h ≡ 2 mod 12.

By [17, P252, (11)], we have

Th = q−r + ch,r−1q
−(r−1) + · · ·+ ch,1q

−1 + ch,0 + · · ·

for some ch,i ∈ Q. Furthermore, [17, P253, Theorem 2] tells us that ch,0 ∕= 0. Hence it makes sense to write

bj(h) := −ch,j/ch,0

for j = 1, 2, ..., r. These are the Siegel coefficients (see [17, P254-255] or [25, P61, (26)]) that appears in Siegel’s

formula.

For a real quadratic number field K, Zagier has expressed Siegel’s formulas in terms of certain elementary

functions which we now describe. For integers j,m ≥ 1, define

ej(m) =
󰁛

b2+4ac=m
a,c>0

aj .

We also denote by χ := χK the nontrivial character of Gal(K/Q), and extend it to a function of Z in the

usual way. Zagier’s formula is then as follow (cf. [25, (14),(16)]).

Theorem 3.3 (Zagier). Let K be a real quadratic field with discriminant D. Then for every integer k ≥ 1, we

have

ζK(1− 2k) = 4

[k/3]+1󰁛

j=1

bj(4k)
󰁛

m|j

χ(m)m2k−1e2k−1

󰀃
(j/m)2D

󰀄
.

For a list of the formula for some values of k, we refer readers to [25, Table 2]. A notable advantage of

this formula lies in its ability to yield exact values of ζK(1 − 2k) for real quadratic number fields with large

discriminant. Moreover, by circumventing the need for L-value calculations in software like Pari or Magma, this

formula potentially eliminates the dependency on GRH.

We shall utilize the aforementioned formula to calculate the special values of the Dedekind zeta function of

a real quadratic field. Furthermore, we introduce a faster method to compute wj(F ), optimizing the process

while maintaining the accuracy required to determine the sizes of the K groups. This approach significantly

improves computational efficiency in the quadratic case (see Listing 2 in Appendix B).
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4. p-elementary extensions

We are now in a position to prove the following theorem as mentioned in our introductory section.

Theorem 4.1. Let p be a fixed prime. Let E be a totally real Galois extension of Q with Galois group G =

Gal(E/Q) ∼= (Z/pZ)⊕n with n ≥ 2. Denote by K1,K2, ...,K pn−1
p−1

all the p-degree extensions of Q contained in

E. Then we have

|K4k−2(OE)| =
1

|K4k−2(Z)|
pn−p
p−1

pn−1
p−1󰁜

j=1

|K4k−2(OKj )|

for every positive integer k.

Proof. For each j = 1, ..., pn−1
p−1 , we let χj,r be all the nontrivial character of Gal(Kj/Q), where r = 1, ..., p− 1.

When viewed as characters of Gal(E/Q), they are exactly all nontrivial characters of Gal(E/Q). By Artin

formalism of L-functions, we have

ζE(s) = ζ(s)

pn−1
p−1󰁜

j=1

p−1󰁜

r=1

L(χj,r, s).

On the other hand, we also have

ζKj
(s) = ζ(s)

p−1󰁜

r=1

L(χj,r, s)

for each j. Hence we have

ζ(s)
pn−p
p−1 ζE(s) =

pn−1
p−1󰁜

j=1

ζKj
(s).

In view of the above equality and Corollary 2.4, the proposition is reduced to proving the equality

(1) w2k(Q)
pn−p
p−1 w2k(E) =

pn−1
p−1󰁜

j=1

w2k(Kj).

If ℓ is a prime, we write w
(ℓ)
j (F ) for the order of (µ⊗j

ℓ∞)Gal(F̄ /F ), where µℓ∞ is the group of all the ℓ-power roots

of unity of F̄ . Plainly, one has wj(F ) =
󰁔

ℓ w
(ℓ)
j (F ). It therefore remains to show that

(2) w
(ℓ)
2k (Q)

pn−p
p−1 w

(ℓ)
2k (E) =

pn−1
p−1󰁜

j=1

w
(ℓ)
2k (Kj)

for every prime ℓ. We first consider the case when the prime ℓ is odd. Since Gal(E/Q) is not cyclic, we have

either E ∩Q(µℓ) = Q or E ∩Q(µℓ) = Ki for some unique i.

Suppose that E ∩ Q(µℓ) = Q. Then we have |L(µℓ) : L| = ℓ − 1 for L = E,Kj ,Q. If 2k is not divisible

by ℓ − 1, it follows from [23, Chap. VI, Proposition 2.2(c)] that w
(ℓ)
2k (L) = 1 for L = E,Kj ,Q, and so equality

(2) is immediate in this case. If 2k is divisible by ℓ − 1, then [23, Chap. VI, Proposition 2.2(c)] tells us that

w
(ℓ)
2k (L) = ℓ1+b for L = E,Kj ,Q, where b is the highest power of ℓ dividing 2k. This again verifies the equality

(2).
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Now, without loss of generality, suppose that E ∩ Q(µℓ) = K1. In other words, K1 is contained in Q(µℓ)

with ℓ ≡ 1 (mod 2p). If 2k is not divisible by (ℓ− 1)/p, it follows from [23, Chap. VI, Proposition 2.2(c)] that

w
(ℓ)
2k (L) = 1 for L = E,Kj ,Q, thus verifying the equality (2). In the event that 2k is divisible by ℓ− 1, a similar

argument as in the previous paragraph yields the required equality (2). Therefore, it remains to consider the

case where 2k is divisible by (ℓ − 1)/p but not divisible by ℓ − 1. In this case, one can directly verify that

w
(ℓ)
2k (E) = w

(ℓ)
2k (K1) = ℓ1+b and w

(ℓ)
2k (Q) = w

(ℓ)
2k (Kj) = 1 for j ≥ 2. From this, we see that the equality (2) is

satisfied.

We now come to the situation when ℓ = 2. We first consider the case
√
2 /∈ E. Under this said assumption, the

field L(
√
−1) does not contain any primitive 8th root of unity. Thus, it follows from [23, Chap. VI, Proposition

2.3(c)] that w
(2)
2k (L) = 22+d for L = E,Kj ,Q, where d is the highest power of 2 dividing 2k. Plainly, the equality

(2) is satisfied in this case. Now suppose that
√
2 ∈ E. In particular, we must then have p = 2. Upon relabeling,

we may assume K1 = Q(
√
2). Note that the fields K1(

√
−1) and E(

√
−1) will now contain a primitive 8th

root of unity but the fields Q(
√
−1) and Kj(

√
−1) (for j ≥ 2) do not. Hence, from [23, Chap. VI, Proposition

2.2(c,d)] it follows that we have w
(2)
2k (E) = w

(2)
2k (K1) = 23+d and w

(2)
2k (Q) = w

(2)
2k (Kj) = 22+d for j ≥ 2. Plugging

these values into the equality (2), we see that the said equality holds.

The proof of the theorem is therefore complete. □

Note that the asserted equality in the preceding proposition is not true if one remove the “totally real”

hypothesis. Indeed, for an imaginary biquadratic field, Guo and Qin has shown that there might be an extra

factor of a power of 2 (see [8, Theorem 3.5, Example 3.10]).

From a computational point of view, Theorem 4.1 is rather advantageous to have, as it streamlines the

process of computing the K-group for an elementary p-extension of Q by reducing it to the computation of the

K-group for a cyclic p-degree extension of Q. Regarding the latter task, and in light of Corollary 2.4, our focus

shifts to determining the values of w2k and the relevant special values. For this, we present the following useful

proposition.

Proposition 4.2. Let p be a prime and k ≥ 1. Suppose that K is a totally real number field which is a cyclic

extension of Q of degree p. Then the following statements are valid.

(i) w2k(Q(
√
2)) = 24+v2(k)

󰁜

l odd prime
l−1|2k

l1+vl(k) =
󰁜

l prime
l−1|2k

l1+vl(8k).

(ii) If the prime p is odd and K ⊆ Q(ζp2), then

w2k(K) = 23+v2(k)p(2+vp(k))δ
󰁜

l ∕=2,p
l−1|2k

l1+vl(k) =
󰁜

l prime
l−1|2k

l1+vl(4pk),

where δ =

󰀫
1, if p− 1 | 2k;
0, otherwise.

(iii) If K is contained in Q(ζq) for some odd prime q, then

w2k(K) = 23+v2(k)q(1+vq(k))ε
󰁜

l ∕=2,q
l−1|2k

l1+vl(k),
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where ε =

󰀫
1, if q−1

p | 2k;
0, otherwise.

(iv) For other K’s not covered in (i)− (iii), one always has

w2k(K) = 23+v2(k)
󰁜

l ∕=2
l−1|2k

l1+vl(k) =
󰁜

l prime
l−1|2k

l1+vl(4k).

Proof. Indeed, for an odd prime p, it follows from [23, Chap. VI, Proposition 2.2] that

µ⊗i
p∞(K) =

󰀫
µ⊗i

pa(K)+vp(i) , if i ≡ 0 mod |K(µp) : K|,
1, if i ∕≡ 0 mod |K(µp) : K|,

where a(K) is the largest integer such that K(µp) contains a primitive pa(K)th root of unity. For p = 2 and

even i, an application of [23, Chap. VI, Proposition 2.3(c)] tells us that

µ⊗i
2∞(K) = µ⊗i

2c(K)+v2(i)

where c(K) is the largest integer such that K(
√
−1) contains a primitive 2c(K)th root of unity. (Note that

our number field K is totally real and so is an exceptional one in the sense of the proposition loc. cit.) The

conclusions of the proposition now follow from the above two observations and a case-by-case analysis. □

For the code designed for the computation of even K-groups within the context of a p-elementary extension,

see Listing 3 in Appendix B.

5. Periodicity of p-rank

Let K be an real quadratic field. Recall that for integers j,m ≥ 1, we have defined

ej(m) =
󰁛

b2+4ac=m
a,c>0

aj .

Plainly, one has e1(D) ≡ e3(D) (mod 3). On the other hand, we have

󰀏󰀏K2(OK)
󰀏󰀏 =

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

4

5
e1(8), K = Q(

√
2),

2e1(5), K = Q(
√
5),

2

5
e1(D), otherwise.

󰀏󰀏K6(OK)
󰀏󰀏 =

󰀻
󰁁󰀿

󰁁󰀽

e3(8), K = Q(
√
2),

1

2
e3(D), otherwise.

Therefore, it follows that
󰀏󰀏K2(OK)

󰀏󰀏 is divisible by 3 if and only if
󰀏󰀏K6(OK)

󰀏󰀏 is divisible by 3. Indeed, we shall

see that there is a general reasoning underlying this observation which will be elucidated in the subsequent

theorem.

Theorem 5.1. Let F be a number field. Then we have

rankZ/pZ
󰀃
K2i(OF )

󰀄
= rankZ/pZ

󰀃
K2i′(OF )

󰀄
,

whenever i ≡ i′ (mod |F (µp) : F |).
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Proof. Although this fact might be well-known among experts but for the convenience of the readers, we shall

provide a brief outline of the proof here. By the work of Rost and Voevodsky [20], there is an identification

K2k(OF )/p ∼= H2
󰀃
Gal(FSp/F )), µ⊗(k+1)

p

󰀄
,

where FSp is the maximal algebraic extension of F unramified outside the set of primes of F above p.

If j ≡ 0 mod [F (µp) : F ], then the Galois group Gal(FSp/F ) acts trivially on µ⊗j
p . Therefore, it follows that

K2k(OF )/p ∼= H2
󰀃
Gal(FSp/F )), µ⊗(k+1)

p

󰀄

∼= H2
󰀃
Gal(FSp/F )), µ⊗(k′+1)

p

󰀄
⊗ µ⊗(k−k′)

p

∼= K2k′(OF )/p⊗ µ⊗(k−k′)
p ,

whenever k ≡ k′ mod [F (ζp) : F ]. Consequently, the groups K2k(OF )/p and K2k′(OF )/p have the same rank

over Z/pZ. □

We return to the context of a real quadratic field K. Proposition 5.1 then tells us that the 3-rank

r3
󰀃
K4k−2(OK)

󰀄

is a constant function in term of k. A consequence of this is the following.

Corollary 5.2. Let K be a real quadratic field with discriminant D. Denote by χ the notrivial character of

Gal(K/Q). Then the following statements are equivalent.

(1) e1(D) is divisible by 3.

(2) e3(D) is divisible by 3.

(3) e5(4D) +
󰀃
5χ(2) + 6

󰀄
e5(D) is divisible by 9.

(4) e7(4D) + 19χ(2)e7(D) is divisible by 27.

(5) e9(4D) +
󰀃
8χ(2) + 3

󰀄
e9(D) is divisible by 9.

(6) e11(9D) is divisible by 3.

(7) e13(9D) is divisible by 3.

(8) e15(9D) is divisible by 3.

Remark 5.3. We remark that the list in the preceding corollary is far from exhaustive and goes on. One can

of course apply the above discussion for other primes. For instances, for the case p = 5, then the following

divisibility statements are equivalent.

(1) e1(D) is divisible by 25.

(2) e5(4D) +
󰀃
7χ(2)− 1

󰀄
e5(D) is divisible by 25.

(3) e9(4D) +
󰀃
8χ(2) + 3

󰀄
e9(D) is divisible by 25.

(4) e13(9D) is divisible by 5.

One might naturally wonder whether these divisibility implications can be directly explained through the

lens of these power sums, although we will not explore this particular subject in the current paper.

We end with another possible application of Theorem 5.1. It is a natural question to ask whetherK2i(OF )[p
∞]

is cyclic for a given prime p. The following corollary gives a sufficient condition for verifying this.
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Corollary 5.4. Let F be a number field. Suppose that
󰀏󰀏K2i0(OF )[p

∞]
󰀏󰀏 = p for some i0. Then we have

rp
󰀃
K2i(OF )

󰀄
= 1,

whenever i ≡ i0 (mod |F (µp) : F |). In other words, K2i(OF )[p
∞] is cyclic for i ≡ i0 (mod |F (µp) : F |).
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Appendix A. Algorithms

This appendix provides algorithms for computing the size of higher even K-groups of ring of integers of totally real number

fields. The algorithms are implemented in SageMath and are divided into two categories: those for quadratic fields, including Siegel

formula-related computations and multi-quadratic field cases, and those for general number fields with Galois group isomorphic to

(Z/pZ)n.

A.1. Quadratic Field Case. This section presents algorithms tailored for quadratic fields, including foundational computations,

Siegel formula-related functions, and a method for combining K-group sizes across multiple quadratic fields. These algorithms

compute the size of higher even K-groups and related quantities using modular forms, zeta functions, and prime products.

Algorithm 1 Computes the size of Kn(Z)
1: Input: Integer n

2: Output: Absolute value of constant

3: function KZ(n)

4: if n mod 8 = 2 then

5: ⊲ Case: n ≡ 2 (mod 8)

6: Compute k ← (n− 2)/8

7: Compute s ← 2k + 1

8: Compute c ← bernoulli(2s) · w(Q, 1, 2s)/(4s)

9: return |2c|
10: else if n mod 8 = 6 then

11: ⊲ Case: n ≡ 6 (mod 8)

12: Compute k ← (n− 6)/8

13: Compute s ← 2k + 2

14: Compute c ← bernoulli(2s) · w(Q, 1, 2s)/(4s)

15: return |c|
16: end if

17: end function
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Algorithm 2 Compute wj(F )

1: Input: Quadratic field K, integer i

2: Output: Product of primes

3: function w(K, i)

4: Initialize empty list list1

5: ⊲ Collect primes where i/(ℓ− 1) ∈ Z
6: for ℓ in primes(2, i+ 2) do

7: if i/(ℓ− 1) ∈ Z then

8: Append ℓ to list1

9: end if

10: end for

11: Filter list1 ← {ℓ ∈ list1 | ℓ ∕= 2}
12: Compute k ← 2i

13: Initialize empty list list2

14: ⊲ Collect additional primes

15: for ℓ in primes(2, 2i+ 2) do

16: if k/(ℓ− 1) ∈ Z and i/(ℓ− 1) ∕∈ Z then

17: Append ℓ to list2

18: end if

19: end for

20: Initialize prod ← 1

21: ⊲ Compute product for list1 primes

22: for ℓ ∈ list1 do

23: if i/ℓ ∕∈ Z then

24: prod ← prod · ℓ
25: else

26: prod ← prod · ℓvaluation(i,ℓ)+1

27: end if

28: end for

29: prod ← prod · 2valuation(i,2)+2

30: ⊲ Adjust for specific quadratic fields

31: for ℓ ∈ list2 do

32: if K = Q(
√
ℓ) then

33: prod ← prod · ℓvaluation(i,ℓ)+1

34: end if

35: end for

36: if K = Q(
√
2) or K = Q(

√
8) then

37: prod ← 2 · prod
38: end if

39: return prod

40: end function
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Algorithm 3 Compute Th = G12r−h+2∆
−r

1: Input: Integer h

2: Output: Modular form T

3: function T(h)

4: if h mod 12 = 2 then

5: Compute r ← ⌊h/12⌋
6: else

7: Compute r ← ⌊h/12⌋+ 1

8: end if

9: Compute k ← 12r − h+ 2

10: if k = 0 then

11: Compute T ← ∆−r

12: else

13: Compute Eisenstein series G ← eisenstein series qexp(k, r + 1, normalization=’constant’)

14: Compute T ← G ·∆−r

15: end if

16: return T +O(q)

17: end function

Algorithm 4 Compute Siegel coefficients bj(h)

1: Input: Integers l, h

2: Output: Ratio of modular form coefficients

3: function b(l, h)

4: Compute modular form T ← T (h)

5: Extract coefficients C ← T.coefficients()

6: Compute length L ← |C|
7: return −C[L− l − 1]/C[L− 1]

8: end function
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Algorithm 5 Compute Siegel Sum

1: Input: Integer D, exponent j

2: Output: Sum of divisors raised to power j

3: function eSiegel(D, j)

4: Initialize haha ← 0

5: Initialize bla ← 0

6: if D/4 ∈ Z then

7: ⊲ Sum over divisors of D/4

8: for each i ∈ divisors(⌊D/4⌋) do

9: haha ← haha + ij

10: end for

11: end if

12: ⊲ Sum over divisors for quadratic residues

13: for b in [1, ⌊
√
D⌋] do

14: if (D − b2)/4 ∈ Z then

15: for each i ∈ divisors(⌊(D − b2)/4⌋) do

16: bla ← bla + ij

17: end for

18: end if

19: end for

20: return haha + 2 · bla
21: end function

Algorithm 6 Compute Weighted Sum with Kronecker Symbol

1: Input: Quadratic field F , integers l, m

2: Output: Weighted sum

3: function S(F, l,m)

4: Compute discriminant D ← F.discriminant()

5: Initialize sum ← 0

6: ⊲ Sum over divisors of l

7: for each j ∈ divisors(l) do

8: Compute sum ← sum + kronecker symbol(D, j) · j2m−1 · eSiegel((l/j)2 ·D, 2m− 1)

9: end for

10: return sum

11: end function
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Algorithm 7 Compute Zeta Function Value for Quadratic Field

1: Input: Discriminant D, complex number s

2: Output: Zeta function value

3: function Zeta(D, s)

4: Create quadratic field F ← Q(
√
D)

5: Set r ← 2

6: Compute k ← (1− s)/2

7: if kr mod 6 = 1 then

8: Compute c ← ⌊kr/6⌋
9: else

10: Compute c ← ⌊kr/6⌋+ 1

11: end if

12: Initialize sum ← 0

13: ⊲ Sum over coefficients

14: for j in [1, c] do

15: Compute sum ← sum + b(j, 2kr) · S(F, j, k)
16: end for

17: return 2r · sum
18: end function
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Algorithm 8 Compute size of K-group of Quadratic Field

1: Input: Quadratic field K, integer n

2: Output: Rounded K-group size

3: function KSize(K,n)

4: Compute degree r ← K.degree()

5: Compute discriminant D ← K.discriminant()

6: if n mod 2 = 0 then

7: Compute k ← (n+ 2)/4

8: if k mod 2 = 0 then

9: ⊲ Even k

10: Compute SS ← (1/2r) · w(K, 2k) · Zeta(D, 1− 2k)

11: else

12: ⊲ Odd k

13: Compute SS ← (−1)r · w(K, 2k) · Zeta(D, 1− 2k)

14: end if

15: else

16: Compute k ← (n+ 1)/4

17: if k mod 2 = 0 then

18: ⊲ Even k

19: Compute SS ← w(K, 2k)

20: else

21: ⊲ Odd k

22: Compute SS ← 2r · w(K, 2k)

23: end if

24: end if

25: return round(SS)

26: end function

Algorithm 9 Compute the size of K-group Size for multi-quadratic Fields

1: Input: List of quadratic fields list1, list of conductors list2, integer n

2: Output: Combined K-group size

3: function MultiSize(list1, list2, n)

4: Initialize prod ← 1

5: Compute degree p ← list1[0].degree()

6: Set k ← 3 ⊲ Assumes Galois group degree

7: ⊲ Compute product of K-group sizes

8: for i in [0, |list1|− 1] do

9: Compute prod ← prod ·KSize(list1[i], list2[i], n)

10: end for

11: Compute denominator denominator ← KZ(n)(p
k−p)/(p−1)

12: return prod/denominator

13: end function

Purpose: Computes the combined K-group size for a list of quadratic fields.
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A.2. General Number Field Case. This section presents algorithms for computing K-group sizes for general number fields,

particularly those with Galois group (Z/pZ)⊕n. These algorithms handle subfield checks, prime products, zeta functions, and

K-group computations for arbitrary degrees.

Algorithm 10 Check if K is a Subfield of L

1: Input: Number fields K, L

2: Output: Boolean indicating if K ⊆ L

3: function is subfield(K,L)

4: Compute embeddings Emb(K,L) of K into L

5: return |Emb(K,L)| > 0

6: end function
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Algorithm 11 Compute wj(F ) for a random totally real field F , based on Proposition 4.2

1: Input: Number field K, conductor cond, integer i

2: Output: Product of prime powers

3: function w(K, cond, i)

4: Compute degree r ← deg(K)

5: Initialize empty list list1

6: ⊲ Collect primes where i mod (ℓ− 1) = 0

7: for ℓ in prime range(2, i+ 2) do

8: if i mod (ℓ− 1) = 0 then

9: Append ℓ to list1

10: end if

11: end for

12: Initialize prod ← 1

13: if K = Q(
√
2) then

14: ⊲ Case: K = Q(
√
2)

15: for ℓ ∈ list1 do

16: prod ← prod · ℓ1+valuation(4i,ℓ)

17: end for

18: else if r is odd and K ⊆ CyclotomicField(r2) then

19: ⊲ Case: Odd degree and cyclotomic subfield

20: for ℓ ∈ list1 do

21: prod ← prod · ℓ1+valuation(2ri,ℓ)

22: end for

23: else if cond is prime and K ⊆ CyclotomicField(cond) then

24: ⊲ Case: Cyclotomic field with prime conductor

25: list2 ← {ℓ ∈ list1 | ℓ ∕= 2, ℓ ∕= cond}
26: for ℓ ∈ list2 do

27: prod ← prod · ℓ1+valuation(i/2,ℓ)

28: end for

29: if (i · r) mod (cond− 1) = 0 then

30: prod ← prod · 23+valuation(i/2,2) · cond1+valuation(i/2,cond)

31: else

32: prod ← prod · 23+valuation(i/2,2)

33: end if

34: else

35: ⊲ Default case

36: for ℓ ∈ list1 do

37: prod ← prod · ℓ1+valuation(2i,ℓ)

38: end for

39: end if

40: return prod

41: end function
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Algorithm 12 Compute Zeta Function Value for Number Field with Gal(K/Q) ∼= Z/pZ
1: Input: Number field K, conductor cond, complex number s

2: Output: Zeta function value

3: function Zeta(K, cond, s)

4: Compute n ← 1− s

5: Compute degree deg ← K.degree()

6: Create Dirichlet group G ← DirichletGroup(cond)

7: Initialize Lval ← 1

8: if deg = 2 then

9: ⊲ Quadratic field case

10: Compute Lval ← −QuadraticBernoulliNumber(n, cond)/n

11: else

12: ⊲ General degree case

13: Compute character χ ← G.0(G.order()/ deg)

14: for i in [1, deg−1] do

15: Compute Lval ← Lval · (−(χi).bernoulli(n)/n)

16: end for

17: end if

18: return ζ(s) · Lval
19: end function
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Algorithm 13 Compute the size of K-groups for Number Field with Gal(K/Q) ∼= Z/pZ
1: Input: Number field K, conductor cond, integer n

2: Output: Rounded K-group size

3: function KSize(K, cond, n)

4: Compute degree r ← K.degree()

5: if n mod 2 = 0 then

6: Compute k ← (n+ 2)/4

7: if k mod 2 = 0 then

8: ⊲ Even k

9: Compute SS ← (1/2r) · w(K, cond, 2k) · Zeta(K, cond, 1− 2k)

10: else

11: ⊲ Odd k

12: Compute SS ← (−1)r · w(K, cond, 2k) · Zeta(K, cond, 1− 2k)

13: end if

14: else

15: Compute k ← (n+ 1)/4

16: if k mod 2 = 0 then

17: ⊲ Even k

18: Compute SS ← w(K, cond, 2k)

19: else

20: ⊲ Odd k

21: Compute SS ← 2r · w(K, cond, 2k)

22: end if

23: end if

24: return round(SS)

25: end function

Algorithm 14 Compute Scaled Value for K-group

1: Input: Number field K, conductor cond, integer n

2: Output: Scaled rational value

3: function OMG(K, cond, n)

4: Compute degree r ← deg(K)

5: Compute k ← ⌊(n+ 2)/4⌋
6: if k is even then

7: ⊲ Even case

8: Compute SS ← w(K, cond, 2k)/2r

9: else

10: ⊲ Odd case

11: Compute SS ← (−1)r · w(K, cond, 2k)

12: end if

13: return Q(R(SS))
14: end function
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Algorithm 15 Compute Size of Higher Even K-groups

1: Input: Number field K, conductor cond, prime p, integers k, n

2: Output: Size of K-group

3: function KSizeppower(K, cond, p, k, n)

4: Compute degree r ← deg(K)

5: Compute a ← ⌊(n+ 2)/4⌋
6: Create Dirichlet group G ← DirichletGroup(cond)

7: Collect characters ← {χ ∈ G | χ.multiplicative order() ∈ {1, p}}
8: Compute subfields Subfields ← K.subfields()

9: Initialize empty list inter

10: ⊲ Collect subfields of degree p

11: for each subfield S ∈ Subfields do

12: if deg(S) = p then

13: Append S to inter

14: end if

15: end for

16: Initialize prod ← 1

17: ⊲ Compute Zeta value

18: for each χ ∈ characters do

19: prod ← prod · (−χ.primitive character().bernoulli(2a)/(2a))

20: end for

21: prod ← prod · ζ(1− 2a)|inter|−1

22: Initialize ww ← 1

23: ⊲ Compute product of wj(F )

24: for each i ∈ inter do

25: ww ← ww ·OMG(i, i.conductor(), n)

26: end for

27: ⊲ Compute denominator

28: denominator ← KZ(n)(p
k−p)/(p−1)

29: return prod · ww/denominator

30: end function

A.3. KSizeppower(K, cond, p, k, n).
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Appendix B. Examples

This appendix introduces three methods for computing the size of higher even K-groups, each tailored to specific types of number

fields. The major distinction among these methods lies in how the special values of the Dedekind zeta function are computed. While

software like SageMath and Magma provide built-in functions for numerical approximations of these values, we aim to compute

them exactly as fractions. The first method is designed for fields whose degrees are p-powers, leveraging their specific arithmetic

structures. The second method applies to fields of higher degree or those whose degrees are not p-powers, where the associated

Dirichlet character must be manually input from the LMFDB to ensure precise fractional computation. Finally, for the quadratic

case, we provide a simplified approach using Siegel’s formula and also offer a faster method to calculate wj(F ), enhancing efficiency

while maintaining exactness. Together, these methods form a comprehensive framework for rigorously determining K-group sizes

across various field types.

The first method is the most general and theoretically works for every totally real abelian number field. The primary difference

from the first method lies in the computation of the Dedekind zeta function, where the associated Dirichlet character must be

manually input from the LMFDB to obtain the special values. While this generality ensures broad applicability, the computation

of wj(F ) can become significantly slower as the degree of the field increases, due to the amplified complexity and computational

effort required. To illustrate this method, we include an example of computing the Dedekind zeta value for a degree 21 field,

highlighting both its flexibility and the challenges posed by high-degree fields.

Listing 1. Computing special value of Dedekind Zeta function for Q(x21 − 7x20 − 70x19 +

462x18+2135x17−12411x16−36610x15+175044x14+373940x13−1403661x12−2218069x11+

6566007x10 + 6982234x9 − 17907827x8 − 9448729x7 + 26548844x6 + 686581x5 − 16732429x4 +

5281647x3 + 1717044x2 − 573440x− 71167)
1 from sage.modular.dirichlet import DirichletCharacter

2

3 H = DirichletGroup (637, base_ring=CyclotomicField (2))

4

5 M = H._module

6

7 chi1 = DirichletCharacter(H, M([0 ,0]))

8

9 from sage.modular.dirichlet import DirichletCharacter

10

11 H = DirichletGroup (637, base_ring=CyclotomicField (42))

12

13 M = H._module

14

15 chi2 = DirichletCharacter(H, M([6 ,28]))

16

17 from sage.modular.dirichlet import DirichletCharacter

18

19 H = DirichletGroup (637, base_ring=CyclotomicField (14))

20

21 M = H._module

22

23 chi3 = DirichletCharacter(H, M([10 ,0]))

24
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25 from sage.modular.dirichlet import DirichletCharacter

26

27 H = DirichletGroup (637, base_ring=CyclotomicField (6))

28

29 M = H._module

30

31 chi4 = DirichletCharacter(H, M([0 ,2]))

32

33 from sage.modular.dirichlet import DirichletCharacter

34

35 H = DirichletGroup (637, base_ring=CyclotomicField (42))

36

37 M = H._module

38

39 chi5 = DirichletCharacter(H, M([36 ,28]))

40

41 from sage.modular.dirichlet import DirichletCharacter

42

43 H = DirichletGroup (637, base_ring=CyclotomicField (42))

44

45 M = H._module

46

47 chi6 = DirichletCharacter(H, M([24 ,14]))

48

49 from sage.modular.dirichlet import DirichletCharacter

50

51 H = DirichletGroup (637, base_ring=CyclotomicField (14))

52

53 M = H._module

54

55 chi7 = DirichletCharacter(H, M([6 ,0]))

56

57 from sage.modular.dirichlet import DirichletCharacter

58

59 H = DirichletGroup (637, base_ring=CyclotomicField (42))

60

61 M = H._module

62

63 chi8 = DirichletCharacter(H, M([30 ,14]))

64

65 from sage.modular.dirichlet import DirichletCharacter

66

67 H = DirichletGroup (637, base_ring=CyclotomicField (42))

68
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69 M = H._module

70

71 chi9 = DirichletCharacter(H, M([24 ,28]))

72

73 from sage.modular.dirichlet import DirichletCharacter

74

75 H = DirichletGroup (637, base_ring=CyclotomicField (14))

76

77 M = H._module

78

79 chi10 = DirichletCharacter(H, M([2 ,0]))

80

81 from sage.modular.dirichlet import DirichletCharacter

82

83 H = DirichletGroup (637, base_ring=CyclotomicField (42))

84

85 M = H._module

86

87 chi11 = DirichletCharacter(H, M([12 ,28]))

88

89 from sage.modular.dirichlet import DirichletCharacter

90

91 H = DirichletGroup (637, base_ring=CyclotomicField (14))

92

93 M = H._module

94

95 chi12 = DirichletCharacter(H, M([12 ,0]))

96

97 from sage.modular.dirichlet import DirichletCharacter

98

99 H = DirichletGroup (637, base_ring=CyclotomicField (42))

100

101 M = H._module

102

103 chi13 = DirichletCharacter(H, M([6 ,14]))

104

105 from sage.modular.dirichlet import DirichletCharacter

106

107 H = DirichletGroup (637, base_ring=CyclotomicField (6))

108

109 M = H._module

110

111 chi14 = DirichletCharacter(H, M([0 ,4]))

112
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113 from sage.modular.dirichlet import DirichletCharacter

114

115 H = DirichletGroup (637, base_ring=CyclotomicField (14))

116

117 M = H._module

118

119 chi15 = DirichletCharacter(H, M([8 ,0]))

120

121 from sage.modular.dirichlet import DirichletCharacter

122

123 H = DirichletGroup (637, base_ring=CyclotomicField (42))

124

125 M = H._module

126

127 chi16 = DirichletCharacter(H, M([36 ,14]))

128

129 from sage.modular.dirichlet import DirichletCharacter

130

131 H = DirichletGroup (637, base_ring=CyclotomicField (42))

132

133 M = H._module

134

135 chi17 = DirichletCharacter(H, M([18 ,14]))

136

137 from sage.modular.dirichlet import DirichletCharacter

138

139 H = DirichletGroup (637, base_ring=CyclotomicField (42))

140

141 M = H._module

142

143 chi18 = DirichletCharacter(H, M([30 ,28]))

144

145 from sage.modular.dirichlet import DirichletCharacter

146

147 H = DirichletGroup (637, base_ring=CyclotomicField (14))

148

149 M = H._module

150

151 chi19 = DirichletCharacter(H, M([4 ,0]))

152

153 from sage.modular.dirichlet import DirichletCharacter

154

155 H = DirichletGroup (637, base_ring=CyclotomicField (42))

156
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157 M = H._module

158

159 chi20 = DirichletCharacter(H, M([18 ,28]))

160

161 from sage.modular.dirichlet import DirichletCharacter

162

163 H = DirichletGroup (637, base_ring=CyclotomicField (42))

164

165 M = H._module

166

167 chi21 = DirichletCharacter(H, M([12 ,14]))

168

169

170

171

172 CHI = [chi1 ,chi2 ,chi3 , chi4 , chi5 , chi6 , chi7 ,chi8 ,chi9 , chi10 , chi11 , chi12 , chi13 , chi14 ,

chi15 , chi16 , chi17 ,chi18 ,chi19 , chi20 , chi21]

173

174 CChi =[]

175 for i in CHI:

176 CChi.append(i.primitive_character ())

177

178 prod =1

179

180 for i in CChi:

181 prod*=-i.bernoulli (2)/2

For quadratic fields, we employ Siegel’s formula to compute the special values of the Dedekind zeta function. Furthermore, we

introduce a faster method to compute wj(F ), optimizing the process while maintaining the accuracy required to determine the

sizes of the K groups. This specialized approach significantly improves computational efficiency in the quadratic case.

Listing 2. Computing special value of Dedekind Zeta function using Siegel’s formula
1 # Define a power series ring over rational numbers

2 R.<q> = QQ[[’q’]]

3

4 # Compute Eisenstein series q-expansions with given normalization and precision

5 F4 = eisenstein_series_qexp (4, 4000, normalization=’constant ’) # Eisenstein series of weight

4

6 F6 = eisenstein_series_qexp (6, 4000, normalization=’constant ’) # Eisenstein series of weight

6

7

8 # Define the discriminant modular form Delta as a combination of F4 and F6

9 Delta = (F4^3 - F6^2) / 1728

10

11 def T(h):

12 """
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13 Computes a modular form T(h) based on Delta and Eisenstein series of various weights.

14 :param h: Integer , typically the weight of the modular form.

15 :return: A q-expansion of the modular form T(h).

16 """

17 if Mod(h, 12) == 2:

18 r = floor(h / 12)

19 else:

20 r = floor(h / 12) + 1

21

22 k = 12 * r - h + 2 # Compute the required weight for the Eisenstein series

23 if k == 0:

24 T = Delta^(-r) # Case where k = 0, use only powers of Delta

25 else:

26 G = eisenstein_series_qexp(k, r + 1, normalization=’constant ’) # Eisenstein series of

weight k

27 T = G * Delta^(-r) # Combine with Delta

28

29 return T + O(q) # Return the truncated q-expansion

30

31 def b(l, h):

32 """

33 Compute the normalized coefficient b_j(h).

34 :param l: Index of the coefficient to retrieve.

35 :param h: Weight parameter for T(h).

36 :return: thew value of b_j(h).

37 """

38 C = T(h).coefficients () # Get coefficients of T(h)

39 L = len(C) # Total number of coefficients

40 return -C[L - l - 1] / C[L - 1] # Return normalized coefficient

41

42 def eSiegel(D, j):

43 """

44 Computes the Siegel -type divisor sum for a given discriminant D and exponent j.

45 :param D: Discriminant.

46 :param j: Exponent for the divisor function.

47 :return: Siegel sum value.

48 """

49 haha = 0

50 bla = 0

51

52 # Compute first term where D/4 is an integer

53 if D / 4 in ZZ:

54 for i in divisors(round(D / 4)):

55 haha += i^j
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56

57 # Compute second term for values b where (D - b^2)/4 is an integer

58 for b in range(1, floor(sqrt(D)) + 1):

59 if (D - b^2) / 4 in ZZ:

60 for i in divisors(round ((D - b^2) / 4)):

61 bla += i^j

62

63 return haha + 2 * bla

64

65 def S(F, l, m):

66 """

67 Computes a sum involving Kronecker symbols and Siegel sums for a field F.

68 :param F: A quadratic field.

69 :param l: Integer parameter.

70 :param m: Integer parameter.

71 :return: The computed sum.

72 """

73 sum = 0

74 D = F.discriminant () # Discriminant of the quadratic field

75

76 # Iterate over divisors of l

77 for j in divisors(l):

78 sum += kronecker_symbol(D, j) * j^(2 * m - 1) * eSiegel ((l / j)^2 * D, 2 * m - 1)

79

80 return sum

81

82 def Zeta(D, s):

83 """

84 Computes a zeta -like function for a totally real quadratic field with discriminant D.

85 :param D: Discriminant of the quadratic field.

86 :param s: An integer parameter.

87 :return: Zeta value.

88 """

89 F = QuadraticField(D) # Create the quadratic field

90 r = 2 # Degree of the field (always 2 for quadratic fields)

91 k = (1 - s) / 2 # Parameter derived from s

92

93 # Determine the range for summation based on k*r modulo 6

94 if Mod(k * r, 6) == 1:

95 c = floor(k * r / 6)

96 else:

97 c = floor(k * r / 6) + 1

98

99 sum = 0
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100

101 # Compute Dedekind zeta function as in Theorem 4.1

102 for j in range(1, c + 1):

103 sum += b(j, 2 * k * r) * S(F, j, k)

104

105 return 2^r * sum # Multiply by 2^r and return the result

106

107

108

109

110 def w(K, i):

111 """

112 Computes w_j(F) for real quadratic fields.

113 :param K: A number field , typically quadratic.

114 :param i: An integer parameter used to determine specific properties of the primes.

115 :return: w_j(F).

116 """

117 list1 = []

118

119 # Collect primes satisfying (i / (ell - 1)) in Z

120 for ell in list(primes(2, i + 2)):

121 if (i / (ell - 1)) in ZZ:

122 list1.append(ell)

123

124 # Remove 2 from list1 to handle it separately

125 list1 = [ell for ell in list1 if ell != 2]

126

127 # Determine additional primes based on k = 2 * i and specific divisibility criteria

128 k = 2 * i

129 list2 = []

130 for ell in list(primes(2, 2 * i + 2)):

131 if (k / (ell - 1)) in ZZ and (i / (ell - 1)) not in ZZ:

132 list2.append(ell)

133

134 # Compute the product based on the properties of list1 and list2

135 prod = 1

136 for ell in list1:

137 if (i / ell) not in ZZ:

138 prod *= ell # Multiply by prime

139 else:

140 prod *= ell **(i.valuation(ell) + 1) # Adjust power based on valuation

141

142 # Handle the contribution from 2 separately

143 prod *= 2**(i.valuation (2) + 2)
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144

145 # Additional adjustment for primes in list2

146 for ell in list2:

147 if K == QuadraticField(ell): # Check if K matches a specific quadratic field

148 prod *= ell **(i.valuation(ell) + 1)

149

150 # Adjust for special cases where K is QuadraticField (2) or QuadraticField (8)

151 if K == QuadraticField (2) or K == QuadraticField (8):

152 prod = 2 * prod

153

154 return prod

155

156

157 def KSize(K, n):

158 """

159 Computes the size of higher even K-groups for the field K and parameter n.

160 :param K: A number field.

161 :param n: An integer parameter related to the K-group.

162 :return: The computed size as an integer.

163 """

164 r = K.degree () # Degree of the field

165 D = K.discriminant () # Discriminant of the field

166

167 # Case when n is even

168 if n % 2 == 0:

169 k = (n + 2) // 4

170 if k % 2 == 0: # k is even

171 SS = (1 / (2^r)) * w(K, 2 * k) * Zeta(D, 1 - 2 * k)

172 else: # k is odd

173 SS = (-1)^r * w(K, 2 * k) * Zeta(D, 1 - 2 * k)

174

175 # Case when n is odd

176 else:

177 k = (n + 1) // 4

178 if k % 2 == 0: # k is even

179 SS = w(K, 2 * k)

180 else: # k is odd

181 SS = 2^r * w(K, 2 * k)

182

183 return round(SS) # Return the rounded result

For p-elementary abelian totally real fields, our code leverages the specific arithmetic properties of these fields to compute

the size of higher even K-groups efficiently, directly utilizing the structured relationship between the field and its Dedekind zeta

function.
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Listing 3. Code for computing size of higher even K-groups
1

2 def is_subfield(K, L):

3 """

4 Checks if K is a subfield of L by verifying the existence of embeddings.

5 :param K: A number field or similar algebraic structure.

6 :param L: A number field into which embeddings are checked.

7 :return: True if K embeds into L, otherwise False.

8 """

9 return len(K.embeddings(L)) > 0

10

11

12 #Computes w_i(K) based on Propsition 4.2

13 def w(K, cond , i):

14 """

15 Computes a weighted product of prime powers for a given number field and conditions.

16 :param K: A number field.

17 :param cond: An integer condition , e.g., conductor of a field.

18 :param i: An integer parameter used in the calculations.

19 :return: A product based on certain arithmetic properties of K and i.

20 """

21 r = K.degree () # Degree of the number field K.

22 list1 = []

23

24 # Collecting primes that satisfy specific congruence properties.

25 for ell in prime_range (2, i + 2):

26 if i % (ell - 1) == 0:

27 list1.append(ell)

28

29 prod = 1

30

31 # Case 1: K is a subfield of QuadraticField (2) and QuadraticField (8)

32 if is_subfield(QuadraticField (2), K) and is_subfield(K, QuadraticField (8)):

33 for ell in list1:

34 prod *= ell ** (1 + (4 * i).valuation(ell))

35

36 # Case 2: K is related to a CyclotomicField of degree r^2

37 elif r % 2 == 1 and cond == r ** 2:

38 for ell in list1:

39 prod *= ell ** (1 + (2 * r * i).valuation(ell))

40

41 # Case 3: K is related to a CyclotomicField of a prime conductor

42 elif s_prime(cond) and cond % 2 == 1:

43 list2 = [ell for ell in list1 if ell != 2 and ell != cond]
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44 for ell in list2:

45 prod *= ell ** (1 + (i / 2).valuation(ell))

46 if (i * r) % (cond - 1) == 0:

47 prod = 2 ** (3 + (i / 2).valuation (2)) * cond ** (1 + (i / 2).valuation(cond)) *

prod

48 else:

49 prod = 2 ** (3 + (i / 2).valuation (2)) * prod

50

51 # Default case

52 else:

53 for ell in list1:

54 prod *= ell ** (1 + (2 * i).valuation(ell))

55

56 return prod

57

58

59 #The following function computes the special value of the Dedekind Zeta function for number

field K.

60 #But in this case , it only deals with the fields with p degrees.

61 #We also have a general version which deals with any fields. (see appendix xxx)

62 def Zeta(K, cond , s):

63 """

64 Computes a modified zeta function for the number field K.

65 :param K: A number field.

66 :param cond: An integer condition , typically related to the field ’s conductor.

67 :param s: A negative integer.

68 :return: The special value of Dedekind Zeta fucntion of K.

69 """

70 n = 1 - s

71 deg = K.degree () # Degree of the field.

72 G = DirichletGroup(cond)

73 Lval = 1

74

75 if deg == 2:

76 Lval = -QuadraticBernoulliNumber(n, cond) / n

77 else:

78 chi = G.0^(ZZ(G.order () / deg))

79 for i in (1.. deg - 1):

80 Lval *= (-(chi^i).bernoulli(n) / n)

81

82 return zeta(s) * Lval

83

84

85
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86 #Computes the size of even K group of ring of integers of the field K using Theorem 2.3 and

Corollary 2.4.

87 def KSize(K, cond , n):

88 """

89 Computes the size of even K group of ring of integers of the field K.

90 :param K: A number field K.

91 :param cond: An integer condition , typically a conductor.

92 :param n: An integer parameter.

93 :return: The computed size.

94 """

95 r = K.degree ()

96

97 if n % 2 == 0:

98 k = (n + 2) // 4

99 if k % 2 == 0:

100 SS = 1 / (2**r) * w(K, cond , 2 * k) * Zeta(K, cond , 1 - 2 * k)

101 else:

102 SS = (-1)**r * w(K, cond , 2 * k) * Zeta(K, cond , 1 - 2 * k)

103 else:

104 k = (n + 1) // 4

105 if k % 2 == 0:

106 SS = w(K, cond , 2 * k)

107 else:

108 SS = 2**r * w(K, cond , 2 * k)

109

110 return round(SS)

111

112

113 #This function computes size of even K groups of Z, which appeared in Theorem 4.1.

114 def KZ(n):

115 """

116 Computes size of even K groups of Z, which appeared in Theorem 4.1.

117 :param n: An integer.

118 :return: A scaling factor based on Bernoulli numbers and prime valuations.

119 """

120 ZZ = IntegerRing ()

121

122 if n % 8 == 2:

123 k = ZZ((n - 2) / 8)

124 s = 2 * k + 1

125 c = bernoulli (2 * s) * w(QQ , 1, 2 * s) / (4 * s)

126 return abs(2 * c)

127 elif n % 8 == 6:

128 k = ZZ((n - 6) / 8)
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129 s = 2 * k + 2

130 c = bernoulli (2 * s) * w(QQ , 1, 2 * s) / (4 * s)

131 return abs(c)

132

133

134 #If E is a totally real Galois extension of Q and Galois group is p-elementary ,

135 #then given a list of intermediate field of E and a list of associated conductors of these

intermediate fields.

136 #We can compute the size of even K groups of ring of integers of E by the formula in Theorem

4.1.

137 def MultiSize(list1 , list2 , n):

138 """

139 Computes a combined size metric over multiple fields and conditions.

140 :param list1: A list of intermediate fields.

141 :param list2: A list of conductors corresponding to the intermediate fields.

142 :param n: An integer n=2k.

143 :return: Size of the K-group for number field E.

144 """

145 prod = 1

146 p = list1 [0]. degree () # Degree of the first field.

147 k = 2 # Degree from Galois group.

148

149 # Compute the product of sizes for each field in the list.

150 for i in range(len(list1)):

151 prod *= KSize(list1[i], list2[i], n)

152

153 # Normalize by a scaling factor.

154 return prod / (KZ(n)**((p**k - p) // (p - 1)))
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