ON EVEN K-GROUPS OF RINGS OF INTEGERS OF REAL ABELIAN FIELDS

MENG FAI LIM AND CHAO QIN

ABSTRACT. We present approaches for calculating the precise orders of the algebraic K-groups K4, —2(Ok) for
a totally real abelian K. Along the way, we also establish a formula connecting the order of K4yn—2(Op) of a
totally real p-elementary field E to its intermediate cyclic p-degree fields. Additionally, we have compiled a list
of values pertaining to these K-groups. Given the substantial space that these data would occupy, the list has
not been incorporated into the paper. We encourage interested readers to consult the supplement document or

the arXiv version of the paper, where these compiled list of values can be found.

1. INTRODUCTION

For a ring R, we let K;(R) denote the algebraic K-groups of R in the sense of Quillen [15]. Thanks to the
pioneering work of Quillen [15], Garland [7], and Borel [2], we now know that the even K-groups of the ring of
integers of a number field are finite. However, these foundational results provide limited insight into the precise
orders of these groups. It was the conjecture proposed by Birch and Tate that initially provided an approach
to understanding the order of K5(Op) by evaluating the Dedekind zeta function of the field F' at s = —1.
This conjecture was later generalized by Lichtenbaum [11, 12] to include the higher even K-groups. Coates
[6] then provided a crucial link by suggesting that this conjecture could be attacked using the main conjecture
of Iwasawa theory [9], an insight that has been pivotal in establishing the conjecture for totally real abelian
fields and forms the backbone of our computational approaches. Since then, significant progress has been made
towards establishing this conjecture, particularly notable in the case of a totally real abelian field.

Building on these conjectures, Browkin and his collaborators [3, 4, 5] have gone a long way into computing
the precise order of Ko(Op) for quadratic fields and specific classes of cubic fields (also see the work of Zhou
[26]). The primary objective of this paper is to continue this line of study by exploring the computation of the
order of higher even K-groups, specifically Kyx_2(Op). More precisely, we discuss three different approaches
for calculating the order of higher even K-groups, with each being particularly suited to certain types of number
fields. The primary difference between these methods lies in the technique used to compute the special values of
the Dedekind zeta function. Although most software tools offer built-in functions for numerical approximations
of these values, our objective is to compute them exactly as fractions.

Our first approach applies in principle to all totally real abelian fields F'. Leveraging the Artin formalism for
L-functions, we establish a connection between the value (z(1—2k) and a suitable product involving generalized
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Bernoulli numbers. Subsequently, we proceed to compute each of these generalized Bernoulli numbers individ-
ually. For this step, the associated Dirichlet character must be manually inputted from the LMFDB to ensure
a precise fractional computation. We demonstrate this entire procedure in the body of the paper through a
concrete example (see Appendix B). The second method is specifically for the real quadratic fields and is based
on a formula of Siegel-Zagier. For this, we provide a simplified approach using Siegel-Zagier’s formula and also
offer a faster method to calculate w;(F'), improving efficiency without compromising on obtaining exact values.
This will be elaborated upon in Section 3.

The third approach is specifically tailored for a p-elementary totally real abelian field E, in which the Galois
group Gal(E/Q) is isomorphic to (Z/pZ)®™ for some prime p and positive integer n. The key to this approach
is the following theorem on which it relies.

Theorem 1.1 (Theorem 4.1). Let p be a prime and n an integer > 2. Suppose that E is a totally real abelian

extension of Q with Galois group G = Gal(E/Q) = (Z/pZ)®". Let K1,Ka,...,Kpyn_1 denote all the p-degree
p—1

extensions of Q contained in E. Then we have the following equality

1 =1
|Kak—2(0p)| = ———= H | Kak—2(Ok, )|
| Kap—2(Z)| 7= j=1

The proof of the theorem will be given in Section 4. From a computational point of view, this result is rather

advantageous to have. For instance, if we want to compute the size of Ky, _o-groups of the ring of integers of
Q(v/2,v/3,/5), it suffices to compute those for the intermediate quadratic fields Q(v/2), Q(v/3), Q(v/5), Q(v/6),
Q(v/10), Q(v/15),Q(+/30), as well as for Q. After obtaining these values, we can simply plug them into the
formula provided by the aforementioned theorem.

1.1. Potential direction for future research.

e QOur results are promising, showing feasibility for selected classes of fields of larger degrees, as evidenced
by our comprehensive compilation of K-group values, which extends over nearly 90 pages (omitted from
the main text but available in the arXiv version). We hope to continue this line of study and extend
our calculations to more extensive classes of number fields in a future work.

e It is natural to ask what we can do with the comprehensive collection of K-groups values obtained.
One direction we hope to study in the near future is to examine the Galois module structure of the
K-groups as module over the Galois group of the number field relative to Q building on our present
numerical data. To the best knowledge of the authors, while the existing literature already contains a
substantial amount of theoretical research (with on-going advancement made even now) on this topic,
when it comes to numerical computation or specific methods determination in this regard, we have yet

come across any relevant studies.
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authors extend their gratitude to Jun Wang and Yichao Zhang for organizing the workshop and for the insightful
discussions that took place during the paper’s preparation. Part of this research was conducted during the first
author’s multiple visits to Harbin Engineering University and the second author’s visits to Central China Normal

University. We would like to express our appreciation to both universities for their warm hospitality. We are
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particularly grateful to Daniel Delbourgo for his valuable insights, keen interest, and ongoing encouragement,
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2. K-GROUPS AND DEDEKIND ZETA FUNCTION

We begin with a brief and quick review of the definition of the higher K-groups. Let R be a ring with identity.
For each integer m > 1, denote by GL,,(R) the group of invertible m x m matrices with entries in R. We then
set GL(R) = ligGLm(R), where the transition map GL,,(R) — GL,,4+1(R) is given by

A (A O) .
0 1
Let BGL(R) be the classifying space of the group GL(R), i.e., BGL(R) is an Eilenberg-MacLane space of type

(GL(R),1) in the sense of [18, Section 8.1]. Up to homotopy equivalence, this space is characterized by the
property that it is path-connected with homotopy groups

GL(R), forn=1,
0, for n > 2.

. (BGL(R)) = {

From the space BGL(R), one obtains a new space, denoted by BGL(R)™, via the +-construction of Quillen (see
[14, 15]). The higher K-groups K, (R) are then defined by

K, (R) := m,(BGL(R)").

It’s well-known that Quillen’s construction recovers the classical Ki-groups of Bass and Ks-groups of Milnor
(for instance, see [23, Chapter 1V]).
In this paper, we are interested in the K-groups of the ring Op, where O is the ring of integers of a number

field F. As a start, we recall the following fundamental results of Quillen and Borel.

Theorem 2.1. The groups K, (Op) are finitely generated for all n > 1. Furthermore, one has

ri(F) +re(F), ifn=1 (mod 4),
rankz (K, (OF)) = < ro(F), if n =3 (mod 4),
0, if n is even.

Here r1(F) (resp., ro(F)) is the number of real embeddings (resp., number of pairs of complex embeddings) of
the number field F.

Proof. Quillen [15] was the first to establish that these K-groups are finitely generated. Subsequently, calcula-
tions of Borel [2] confirmed the ranks of the K-groups as stated in the theorem. We should also mention that

prior to the works of Qullen and Borel, the finiteness of K2(Or) has been proven by Garland [7]. O

Unfortunately, the results of Quillen and Borel do not provide a means to determine the exact order of the
even K-groups Ky;(Op). It was only due to the remarkable insight of Birch, Tate and Lichtenbaum [11, 12]
that one can hope to understand these orders via special values of Dedekind zeta function, a concept we will
now outline briefly. Let (r(s) be the Dedekind zeta function of F. This function, (r(s), admits an analytic

continuation to the whole complex plane, with the exception of a simple pole at s = 1. Consequently, it makes
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sense to speak of (r(1 — 2k) for a positive integer k. Thanks to the collective gallant efforts of numerous
mathematicians, we have the following.

Theorem 2.2. Let F be a totally real abelian number field of degree r (= r1(F)). Then for every integer k > 1,
we have

kror [ Kar—2(OF)|

Cr(1—2k)=(-1) Kae 1 (On)]

Proof. Lichtenbaum [11] first formulated this conjecture up to a power of 2. Subsequently, the work of Coates
[6] suggested that one might possibly attack this conjecture via the main conjecture of Iwasawa [9]. Building
on this insight, Bayer and Neukirch [1] showed that the main conjecture of Iwasawa implies a cohomological
version of Lichtenbaum’s conjecture (for a detailed exposition of this cohomological version, readers are referred
to [1]). Notably, this cohomological formulation is equivalent to the K-theoretical version, a connection estab-
lished by the Quillen-Lichtenbaum conjecture. This conjecture is now a theorem, being a consequence of the
groundbreaking work of Rost-Voevodsky ([20]; see also Rognes-Weibel [16]). Prior to these developments, the

main conjecture of Iwasawa has already been proven by by Mazur-Wiles [13] and Wiles [24]. O

The value |K4,_1(OF)| can be described rather easily. Let po, be the group of all the roots of unity of F,
where F is the algebraic closure of F. For an integer j > 1, we write u&J for the j-fold tensor product of pis
with Gal(F'/F) acting diagonally. Set w;(F) to be the order of (u&3)Gal(F/F) The following gives a relation of
| K4—1(OF)| in terms of these values.

Theorem 2.3. Let F' be a totally real abelian number field of degree r. Then for every integer k > 1, we have

2"wor(F), if k is odd,

Kip—1(OF)| =
| | wag (F), if k is even.

Proof. See [23, Chap. VI, Theorem 9.5]. a
Combining the above theorems, we have the following observation.

Corollary 2.4. Let F be a totally real abelian number field of degree r. Then for every integer k > 1, we have

(=1)"war (F)Cr(1 —2k), if k is odd,
| Kar—2(Or)| =

1 e
2—Tw2k(F)CF(1 —2k), if k is even.

In principle, the values of woy(F') can be determined rather easily (for instances, see [23, Chap. VI, Propo-
sitions 2.2 and 2.3]). Consequently, the main challenge lies in calculating the values of ((1 — 2k). For number
fields of small degree, these can be computed via bulit-in functions in mathematical software programs. How-
ever, even in the case of a real quadratic field, the computed values are not exact when the discriminant of
the real quadratic number field F' becomes large. In this context, computing (x(—19) often leads to a loss of
significant digits. In the subsequent discussion of the paper, we will outline strategies to circumvent this issue.

To begin with, we introduce the following approach that utilizes generalized Bernoulli numbers.
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Let F be an abelian totally real number field with Galois group G = Gal(F/Q). By Artin formalism, we

have

Cr(1—2k) =¢(1—2k) [] Lx.1—2k)
X#X0
where x runs through all the nontrivial characters of G. It’s well-known that

_ ng _ B2k,x
¢(1—2k)= 5% and L(x,1-—2k) = ok

(for instance, see [21, Theorem 4.2]). The above therefore gives a way to compute the (z(1— 2k) via generalized

Bernoulli numbers. To see a specific example, we refer readers to the first listing in Appendix B.

3. QUADRATIC FIELD

In this section, we shall describe a method (due to Siegel-Zagier) of computing the L-values for a totally real
quadratic field. To prepare for this, we need to introduce some further notations. For a given integer j > 0 and
an ideal a of Op, we define

Uj(u) = Z |O/b|ja

bla
where the sum is taken over all nonzero ideals b of O that divide a. In the special case where Op coincides
with Z, we shall simplify the notation to o(m) = o(mZ). Note that in this context, we have

oj(m)=>_d,
dlm

where d runs through all the positive divisors of m. Furthermore, for integers j, k > 1, we set

tr(v)=j
Here 0 = 0 is the different of F' and the sum is taken over all totally positive elements in ? with trace j. With

these notation in hand, we can now state the following formula of Siegel.

Theorem 3.1 (Siegel). Let F be a totally real number field. Then for every integer k > 1, we have
Cr(L - 2k) = 270 37 (2| F : Q)sT (28),
j=1

where the numbers b;(2k|F : Q|) are rational and depend only on 2k|F' : Q|, and the integer r is given by

[MFTQW , if k|F : Q| =1 (mod 6),

[’fIF : Q|

5 } + 1, otherwise.

Remark 3.2. Some of the values of Siegel coefficients b;(m) for 4 < m < 40 can be found in [25, Table 1]. For

the convenience of the readers, we provide an approach to computing these terms following [17].
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For k = 4,6, ..., we set
and

We then define
Ty = Gror—n42A77,
where
[&]+1, h#2mod 12;
(2], h =2 mod 12.

—

r =

[

By [17, P252, (11)], we have
Th=q"+cnr1q "D+ tenag Heno o
for some ¢y ; € Q. Furthermore, [17, P253, Theorem 2] tells us that ¢j, 0 # 0. Hence it makes sense to write
bj(h) == —cn,j/cno

for j =1,2,...,r. These are the Siegel coefficients (see [17, P254-255] or [25, P61, (26)]) that appears in Siegel’s

formula.

For a real quadratic number field K, Zagier has expressed Siegel’s formulas in terms of certain elementary
functions which we now describe. For integers j,m > 1, define

ej(m) = Z al.

b%+4ac=m
a,c>0

We also denote by x := xx the nontrivial character of Gal(K/Q), and extend it to a function of Z in the
usual way. Zagier’s formula is then as follow (cf. [25, (14),(16)]).

Theorem 3.3 (Zagier). Let K be a real quadratic field with discriminant D. Then for every integer k > 1, we

have
k/3]+1

[

Cr(l—2k)=4 ) bj(4k) Y x(m)m* 'ez_1((j/m)*D).
j=1 mj

For a list of the formula for some values of k, we refer readers to [25, Table 2]. A notable advantage of

this formula lies in its ability to yield exact values of (i (1 — 2k) for real quadratic number fields with large

discriminant. Moreover, by circumventing the need for L-value calculations in software like Pari or Magma, this
formula potentially eliminates the dependency on GRH.

We shall utilize the aforementioned formula to calculate the special values of the Dedekind zeta function of

a real quadratic field. Furthermore, we introduce a faster method to compute w;(F), optimizing the process

while maintaining the accuracy required to determine the sizes of the K groups. This approach significantly

improves computational efficiency in the quadratic case (see Listing 2 in Appendix B).
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4. p-ELEMENTARY EXTENSIONS

We are now in a position to prove the following theorem as mentioned in our introductory section.

Theorem 4.1. Let p be a fized prime. Let E be a totally real Galois extension of Q with Galois group G =

Gal(E/Q) = (Z/pZ)®™ with n > 2. Denote by K1, Ko, ..., Kpn_1 all the p-degree extensions of Q contained in
p—1

E. Then we have

p"—1

1 o
|Kap—2(0p)| = ————— H | Kar—2(Ok;)|
|Karp—2(Z)| 7= j=51

for every positive integer k.

Proof. For each j =1, ..., p 11, we let x;, be all the nontrivial character of Gal(K;/Q), where r =1,...,p — 1.
When viewed as characters of Gal(E/Q), they are exactly all nontrivial characters of Gal(E/Q). By Artin

formalism of L-functions, we have

P —1

)ﬁl:[ X_]Ta

On the other hand, we also have

for each j. Hence we have

¢(s) 57 Ca(s H<K

In view of the above equality and Corollary 2.4, the proposmon is reduced to proving the equality

p—l

n

(1) war,(Q) 71 woy (E H wap (K.

If £ is a prime, we write wj(-e)(F) for the order of (u?oi)Gal(F/F), where g is the group of all the ¢-power roots

of unity of F. Plainly, one has w;(F) =[], w§e)(F). It therefore remains to show that

@ w (@5 Fulf)(B) = [ w0
j=1

for every prime ¢. We first consider the case when the prime ¢ is odd. Since Gal(E/Q) is not cyclic, we have
either ENQ(ue) = Q or ENQ(ue) = K; for some unique 7.

Suppose that £ N Q(u¢) = Q. Then we have |L(pue) : L| = ¢ — 1 for L = E,K;,Q. If 2k is not divisible
by ¢ — 1, it follows from [23, Chap. VI, Proposition 2.2(c)] that wgc)(L) =1for L = E,K;,Q, and so equality
(2) is immediate in this case. If 2k is divisible by ¢ — 1, then [23, Chap. VI, Proposition 2.2(c)| tells us that
wé?( L)y={0" for L = E, K;,Q, where b is the highest power of ¢ dividing 2k. This again verifies the equality

(2).
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Now, without loss of generality, suppose that F N Q(us) = K;. In other words, K; is contained in Q(p)
with £ = 1 (mod 2p). If 2k is not divisible by (¢ — 1)/p, it follows from [23, Chap. VI, Proposition 2.2(c)] that
wl) (L) =1 for L = E, K;,Q, thus verifying the equality (2). In the event that 2k is divisible by £— 1, a similar
argument as in the previous paragraph yields the required equality (2). Therefore, it remains to consider the
case where 2k is divisible by (¢ — 1)/p but not divisible by ¢ — 1. In this case, one can directly verify that
wéQ(E) = wg;)(Kl) = (b and wé?(@) gQ(K ) =1 for j > 2. From this, we see that the equality (2) is
satisfied.

We now come to the situation when ¢ = 2. We first consider the case /2 ¢ E. Under this said assumption, the
field L(y/—1) does not contain any primitive 8th root of unity. Thus, it follows from [23, Chap. VI, Proposition
2.3(c)] that wéi)(L) =22%d for L = F, K;,Q, where d is the highest power of 2 dividing 2k. Plainly, the equality
(2) is satisfied in this case. Now suppose that V2 € E. In particular, we must then have p = 2. Upon relabeling,
we may assume K; = Q(v/2). Note that the fields K;(v/—1) and E(y/—1) will now contain a primitive Sth
root of unity but the fields Q(v/—1) and K;(v/—1) (for j > 2) do not. Hence, from [23, Chap. VI, Proposition
2.2(c,d)] it follows that we have wéi)(E) = wgi)(Kl) = 23+d and wéi)((@) wéi)(K ) = 22%d for j > 2. Plugging
these values into the equality (2), we see that the said equality holds.

The proof of the theorem is therefore complete. |

Note that the asserted equality in the preceding proposition is not true if one remove the “totally real”
hypothesis. Indeed, for an imaginary biquadratic field, Guo and Qin has shown that there might be an extra
factor of a power of 2 (see [8, Theorem 3.5, Example 3.10]).

From a computational point of view, Theorem 4.1 is rather advantageous to have, as it streamlines the
process of computing the K-group for an elementary p-extension of Q by reducing it to the computation of the
K-group for a cyclic p-degree extension of Q. Regarding the latter task, and in light of Corollary 2.4, our focus
shifts to determining the values of wsyy and the relevant special values. For this, we present the following useful
proposition.

Proposition 4.2. Let p be a prime and k > 1. Suppose that K is a totally real number field which is a cyclic
extension of Q of degree p. Then the following statements are valid.

(i) war(@(v2) = 247 [T @ = T e,

I odd prime I prime
I—1|2k 1—1)2k

(i) If the prime p is odd and K C Q((p2), then

wop(K) = 282 Wp@tun (ko T grtuk) — T phavark),
1#2,p I prime
1-1[2k 1—1)2k
0, otherwise.
1) If K is contained in Q({,) for some odd prime q, then
(i41) q p q

w2k(K) _ 23+v2 k) (1+vq(k H l1+vl(k)

1#2,q
1-1|2k

where § =
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1, if T2 | 2k;
0, otherwise.
(iv) For other K'’s not covered in (i) — (ii1), one always has

ka(K) :23+v2(k) H ll+vl(k) _ H l1+vl(4k).

1#2 | prime
1-1|2k 1-1)2k

where € =

Proof. Indeed, for an odd prime p, it follows from [23, Chap. VI, Proposition 2.2] that

8 (K) = M?J(K)+Up(i)7 if i = 0 mod [K(pp) : K,
P 1, if i 0 mod |K () : K|,

where a(K) is the largest integer such that K(u,) contains a primitive p®*)th root of unity. For p = 2 and
even 4, an application of [23, Chap. VI, Proposition 2.3(c)] tells us that
/'Lé@olo (K) = ,Ufg%i(mﬂ@(i)

where ¢(K) is the largest integer such that K(y/—1) contains a primitive 2¢(*)th root of unity. (Note that
our number field K is totally real and so is an exceptional one in the sense of the proposition loc. cit.) The

conclusions of the proposition now follow from the above two observations and a case-by-case analysis. (]

For the code designed for the computation of even K-groups within the context of a p-elementary extension,
see Listing 3 in Appendix B.

5. PERIODICITY OF p-RANK

Let K be an real quadratic field. Recall that for integers j,m > 1, we have defined

ej(m) = Z al.
b%+4ac=m
a,c>0

Plainly, one has e; (D) = e3(D) (mod 3). On the other hand, we have

o, K=au, ®),  K=0(2)
€3 ) = ’
|K2(Ok)| =4 2e1(5), K =Q(V5), |K6(Ox)| =14

—e3(D), otherwise.
2 . 2
e (D), otherwise.

Therefore, it follows that ’KQ(OK)’ is divisible by 3 if and only if ’KG((’)K)’ is divisible by 3. Indeed, we shall
see that there is a general reasoning underlying this observation which will be elucidated in the subsequent

theorem.
Theorem 5.1. Let F' be a number field. Then we have
rankz,z (K2i(Or)) = ranky,,z (K2 (OF)),

whenever i = ¢’ (mod |F(u,p) : F|).
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Proof. Although this fact might be well-known among experts but for the convenience of the readers, we shall
provide a brief outline of the proof here. By the work of Rost and Voevodsky [20], there is an identification

Ko (OF)/p = Hz(Gal(Fsp/F)),uf(kH))’

where Fjg is the maximal algebraic extension of F' unramified outside the set of primes of F' above p.
If j = 0 mod [F(up) : F], then the Galois group Gal(Fs,/F) acts trivially on u57. Therefore, it follows that

Ko (OF)/p = H?( Gal(Fs, /F)), u$*+D)
> H2(Gal(Fs,/F)), n2%+1) @ p&k-+)
= Ko (OF) /p @ p&*=+),

whenever k£ = k' mod [F((,) : F|. Consequently, the groups Kox(Op)/p and Ko (Op)/p have the same rank
over Z/pZ. O

We return to the context of a real quadratic field K. Proposition 5.1 then tells us that the 3-rank
r3(Kar—2(Ok))
is a constant function in term of k. A consequence of this is the following.

Corollary 5.2. Let K be a real quadratic field with discriminant D. Denote by x the notrivial character of
Gal(K/Q). Then the following statements are equivalent.

(1) e1(D) is divisible by 3.

(2) es(D) is divisible by 3.

(3) e5(4D) + (5x(2) + 6)es(D) is divisible by 9.

(4) e7(4D) + 19x(2)e7(D) is divisible by 27.

(5) eg(4D) + (8x(2) + 3)eg(D) is divisible by 9.

(6)

(7)

(8)

)

s

®

6) e11(9D) is divisible by 3.
7) e13(9D) is divisible by 3.
8) e15(9D) is divisible by 3.

Remark 5.3. We remark that the list in the preceding corollary is far from exhaustive and goes on. One can
of course apply the above discussion for other primes. For instances, for the case p = 5, then the following
divisibility statements are equivalent.

(1) e1(D) is divisible by 25.

(2) es(4D) + (7x(2) — 1)es(D) is divisible by 25.

(3) eo(4D) + (8x(2) + 3)eq(D) is divisible by 25.

(4) e13(9D) is divisible by 5.

One might naturally wonder whether these divisibility implications can be directly explained through the

lens of these power sums, although we will not explore this particular subject in the current paper.

We end with another possible application of Theorem 5.1. It is a natural question to ask whether Ko;(Or)[p®™]

is cyclic for a given prime p. The following corollary gives a sufficient condition for verifying this.
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Corollary 5.4. Let F be a number field. Suppose that |K2¢O(OF)[p°°]| = p for some ig. Then we have

Tp(KQi(OF)) = ].,

whenever i = iy (mod |F(pp) : F|). In other words, Ko;(Op)[p™] is cyclic for i =iy (mod |F(pyp) : F|).

(1]
2]
(3]

[9]
(10]

(11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]
(19]
[20]

(21]

(22]
23]

24]
(25]

[26]
27]

REFERENCES

P. Bayer and J. Neukirch, On values of zeta functions and l-adic Euler characteristics. Invent. Math. 50 (1978/79), no. 1, 35-64.
A. Borel, Stable real cohomology of arithmetic groups. Ann. Sci. Ecole Norm. Sup. (4) 7 (1974), 235-272.

J. Browkin, Computing the tame kernel of quadratic imaginary fields (with an appendix by Karim Belabas and Herbert Gangl).
Math. Comp. 69 (2000), no. 232, 1667-1683.

J. Browkin, Tame kernels of cubic cyclic fields. Math. Comp. 74 (2005), no. 250, 967-999.

J. Browkin and H. Gangl, Tame and wild kernels of quadratic imaginary number fields. Math. Comp. 68 (1999), no. 225,
291-305.

J. Coates, On K2 and some classical conjectures in algebraic number theory. Ann. of Math. (2) 95 (1972), 99-116.

H, Garland, A finiteness theorem for K of a number field. Ann. of Math. (2) 94 (1971), 534-548.

X. Guo and H. Qin, The extended Bloch groups of biquadratic and dihedral number fields, J. Pure Appl. Algebra 222 (2018)
3968-3981.

K. Iwasawa, On Z;-extensions of algebraic number fields. Ann. of Math. (2) 98 (1973), 246-326.

M. Kolster, K-theory and arithmetic. Contemporary developments in algebraic K-theory, 191-258, ICTP Lect. Notes, XV,
Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004.

S. Lichtenbaum, On the values of zeta and L-functions. I. Ann. of Math. (2) 96 (1972), 338-360.

S. Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic K-theory. Algebraic K-theory, II: “Classical” al-
gebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 489-501.
Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973.

B. Mazur and A. Wiles, Class fields of abelian extensions of Q. Invent. Math. 76 (1984), no. 2, 179-330.

D. Quillen, Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst.,
Seattle, Wash., 1972), pp. 85-147. Lecture Notes in Math., Vol. 341, Springer, Berlin 1973.

D. Quillen, Finite generation of the groups K; of rings of algebraic integers. Algebraic K-theory, I: Higher K-theories (Proc.
Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 179-198. Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973.
J. Rognes and C. Weibel, Two-primary algebraic K-theory of rings of integers in number fields (Appendix A by M. Kolster).
J. Amer. Math. Soc. 13 (2000), no. 1, 1-54.

C. L. Siegel, Advanced analytic number theory. Second edition. Tata Institute of Fundamental Research Studies in Mathematics,
9. Tata Institute of Fundamental Research, Bombay, 1980.

E. H. Spanier, Algebraic topology. reprint of the 1966 original. Springer-Verlag, New York, 1989.

C. Soulé, K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale. Invent. Math. 55 (1979), no. 3, 251-295.
V. Voevodsky, On motivic cohomology with Z/l-coefficients. Ann. of Math. (2) 174 (2011), no. 1, 401-438.

L. C. Washington, Introduction to cyclotomic fields. Second edition. Graduate Texts in Mathematics, 83. Springer-Verlag, New
York, 1997.

C. Weibel, The norm residue isomorphism theorem, J. Topol. 2 (2009), no. 2, 346-372.

C. Weibel, The K-book. An introduction to algebraic K-theory. Graduate Studies in Mathematics, 145. American Mathematical
Society, Providence, RI, 2013. xii+618 pp.

A. Wiles, The Iwasawa conjecture for totally real fields. Ann. of Math. (2) 131 (1990), no. 3, 493-540.

D. Zagier, On the values at negative integers of the zeta-function of a real quadratic field. Enseign. Math. (2) 22 (1976), no.
1-2, 55-95.

H. Zhou, Tame kernels of cubic cyclic fields. Acta Arith. 124 (2006), no. 4, 293-313.

H. Zhou, The tame kernel of multiquadratic number fields, Commun. Alg. 37 (2009), no. 2, 630-638.



12 MENG FAI LIM AND CHAO QIN

APPENDIX A. ALGORITHMS

This appendix provides algorithms for computing the size of higher even K-groups of ring of integers of totally real number
fields. The algorithms are implemented in SageMath and are divided into two categories: those for quadratic fields, including Siegel
formula-related computations and multi-quadratic field cases, and those for general number fields with Galois group isomorphic to

(Z/pZ)".

A.1. Quadratic Field Case. This section presents algorithms tailored for quadratic fields, including foundational computations,
Siegel formula-related functions, and a method for combining K-group sizes across multiple quadratic fields. These algorithms

compute the size of higher even K-groups and related quantities using modular forms, zeta functions, and prime products.

Algorithm 1 Computes the size of K, (Z)
1: Input: Integer n

2: Output: Absolute value of constant
3: function KZ(n)
if n mod 8 =2 then

=

5 > Case: n =2 (mod 8)
6: Compute k + (n —2)/8

7 Compute s + 2k + 1

8 Compute ¢ < bernoulli(2s) - w(Q, 1,2s)/(4s)

9: return |2¢|
10: else if n mod 8 = 6 then

11: > Case: n =6 (mod 8)
12: Compute k + (n —6)/8

13: Compute s « 2k 4+ 2

14: Compute ¢ < bernoulli(2s) - w(Q, 1,2s)/(4s)

15: return |c|

16: end if

17: end function
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Algorithm 2 Compute w;(F)

1: Input: Quadratic field K, integer ¢
2: Output: Product of primes
3: function w(K, 1)

b

38:
39:

Initialize empty list list1

for ¢ in primes(2,i + 2) do
if i/(¢ —1) € Z then
Append £ to list1
end if
end for
Filter listl < {¢ € list1 | £ # 2}
Compute k « 2
Initialize empty list list2

for ¢ in primes(2,2i + 2) do
if k/({—1)€Z and i/({ —1) € Z then
Append /£ to list2
end if
end for
Initialize prod < 1

for ¢ € listl do
if i/¢ ¢ Z then
prod < prod - £
else
prod <« prod - gvaluation(i,€)+1
end if
end for
prod <« prod - gvaluation(i,2)+2

for ¢ € list2 do

if K = Q(v¥) then
prod < prod - gvaluation(i,£)+1

end if

end for

if K= Q(\/i) or K = Q(\/g) then
prod < 2 - prod

end if

return prod

40: end function

> Collect primes where /(¢ — 1) € Z

> Collect additional primes

> Compute product for listl primes

> Adjust for specific quadratic fields




14 MENG FAI LIM AND CHAO QIN

Algorithm 3 Compute T}, = Gror—pt2A~"

1: Input: Integer h

2: Output: Modular form T
3: function T(h)

4 if A mod 12 = 2 then

5: Compute 7 < |h/12]

6 else

7 Compute r + |h/12] +1
8 end if

9: Compute k < 12r — h 4 2
10: if k=0 then

11: Compute T +— A™"

12: else

13: Compute Eisenstein series G < eisenstein_series_qexp(k, r + 1, normalization="constant’)
14: Compute 7'+ G- A™"

15: end if

16: return T + O(q)
17: end function

Algorithm 4 Compute Siegel coefficients b;(h)

: Input: Integers [, h
: Output: Ratio of modular form coefficients
: function B(l, h)
Compute modular form T <+ T'(h)
Extract coefficients C' < T.coefficients()
Compute length L + |C]|
return —C[L — 1 —1]/C[L — 1]
end function

S A e
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Algorithm 5 Compute Siegel Sum

1: Input: Integer D, exponent j

2: Output: Sum of divisors raised to power j

3: function ESIEGEL(D, j)
4: Initialize haha < 0

5: Initialize bla < 0

6: if D/4 € Z then

7

8: for each ¢ € divisors(|D/4]) do
9: haha < haha + iJ

10: end for

11: end if

12:

13: for b in [1, [V D]] do

14: if (D —b%)/4 € Z then

15: for each i € divisors(| (D — b?)/4]) do
16: bla <+ bla + i/

17: end for

18: end if

19: end for
20: return haha + 2 - bla
21: end function

> Sum over divisors of D/4

> Sum over divisors for quadratic residues

Algorithm 6 Compute Weighted Sum with Kronecker Symbol

: Input: Quadratic field F', integers [, m
: Output: Weighted sum
: function S(F,l,m)

Compute discriminant D < F.discriminant()

for each j € divisors(l) do

Compute sum < sum + kronecker_symbol(D, j) -

1
2
3
4
5: Initialize sum « 0
6.
7
8
9

end for
10: return sum

11: end function

> Sum over divisors of [

—1.eSiegel((1/5)% - D,2m — 1)
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Algorithm 7 Compute Zeta Function Value for Quadratic Field

1: Input: Discriminant D, complex number s

2: Output: Zeta function value

3: function ZETA(D, s)

Create quadratic field F' + Q(v/D)
Set r + 2
Compute k < (1 —s)/2
if kr mod 6 =1 then
Compute ¢ « |kr/6]
else
Compute ¢ « |kr/6] + 1
end if

Initialize sum < 0

for j in [1,¢c] do
Compute sum < sum + b(j, 2kr) - S(F, j, k)
end for

return 2" - sum

18: end function

> Sum over coefficients
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Algorithm 8 Compute size of K-group of Quadratic Field

1: Input: Quadratic field K, integer n

2: Output: Rounded K-group size

3: function KSI1zE(K, n)

4: Compute degree r + K.degree()

5: Compute discriminant D < K.discriminant()
6: if n mod 2 =0 then

T Compute k < (n+ 2)/4

8 if £ mod 2 =0 then

9

10: Compute SS + (1/27) - w(K, 2k) - Zeta(D, 1 — 2k)

11: else

12:

13: Compute SS + (—1)" - w(K, 2k) - Zeta(D, 1 — 2k)
14: end if

15: else

16: Compute k < (n+1)/4

17: if £ mod 2 =0 then

18:

19: Compute SS + w(K, 2k)

20: else

21:

22: Compute SS + 2" - w(K, 2k)
23: end if

24: end if

25: return round(SS)
26: end function

> Even k

> Odd k

> Even k

> Odd k

Algorithm 9 Compute the size of K-group Size for multi-quadratic Fields

1: Input: List of quadratic fields list1, list of conductors list2, integer n
2: Output: Combined K-group size

3: function MuLTiS1ZE(list1, list2, n)

4: Initialize prod < 1

5: Compute degree p « list1[0].degree()

6: Set k + 3

7

8: for i in [0, |listl| — 1] do

9: Compute prod « prod - KSize(list1[é], list2[i], n)
10: end for
11: Compute denominator denominator <+ KZ(n)(’”c —p)/(p=1)
12: return prod/denominator
13: end function

> Assumes Galois group degree
> Compute product of K-group sizes

Purpose: Computes the combined K-group size for a list of quadratic fields.
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A.2. General Number Field Case. This section presents algorithms for computing K-group sizes for general number fields,
particularly those with Galois group (Z/pZ)®". These algorithms handle subfield checks, prime products, zeta functions, and

K-group computations for arbitrary degrees.

Algorithm 10 Check if K is a Subfield of L

: Input: Number fields K, L

: Output: Boolean indicating if K C L

: function 1S_SUBFIELD(K, L)

Compute embeddings Emb(K, L) of K into L
return |[Emb(K,L)| >0

: end function
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Algorithm 11 Compute w;(F') for a random totally real field F', based on Proposition 4.2

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

1
2
3
4
5:
6.
7
8
9

: Input: Number field K, conductor cond, integer %
: Output: Product of prime powers

: function w(K, cond, )

Compute degree r + deg(K)
Initialize empty list list1

for ¢ in prime_range(2,i + 2) do
if ¢ mod (¢ —1) =0 then
Append ¢ to list1
end if
end for
Initialize prod < 1
if K =Q(v2) then

for ¢ € listl do
prod < prod - ¢1+valuation(4i,£)
end for

else if r is odd and K C CyclotomicField(r?) then

for ¢ € listl do
prod « prod - ¢1+valuation(2ri,£)
end for

else if cond is prime and K C CyclotomicField(cond) then

list2 «— {£ € list1 | £ # 2, £ # cond}
for ¢ € list2 do

prod <« prod - ¢1+valuation(i/2,£)
end for
if (i-7) mod (cond — 1) =0 then

93-+valuation(i/2,2) d1+valuation(i/2,cond)

prod < prod - . con
else

prod < prod - 93+valuation(i/2,2)
end if

else

for ¢ € listl do
prod < prod - ¢1+valuation(2i,£)
end for

end if

return prod

end function

> Collect primes where ¢ mod ({ —1) =0

> Case: K = Q(v/2)

> Case: Odd degree and cyclotomic subfield

> Case: Cyclotomic field with prime conductor

> Default case
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Algorithm 12 Compute Zeta Function Value for Number Field with Gal(K/Q) = Z/pZ

1: Input: Number field K, conductor cond, complex number s

2: Output: Zeta function value
3: function ZETA(K, cond, s)
4: Compute n < 1 — s
Compute degree deg < K.degree()
Create Dirichlet group G < DirichletGroup(cond)

5

6:

7 Initialize Lval < 1
8 if deg = 2 then

9

> Quadratic field case

10: Compute Lval - —QuadraticBernoulliNumber(n, cond)/n

11: else

12: > General degree case
13: Compute character x + G.0(G-order()/ deg)

14: for i in [1,deg —1] do

15: Compute Lval + Lval - (—(x?).bernoulli(n)/n)

16: end for

17: end if

18: return ((s) - Lval
19: end function
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Algorithm 13 Compute the size of K-groups for Number Field with Gal(K/Q) = Z/pZ

1: Input: Number field K, conductor cond, integer n

2: Output: Rounded K-group size
3: function KS1zE(K, cond,n)
4: Compute degree r + K.degree()

5 if n mod 2 =0 then
6: Compute k < (n +2)/4
7 if £ mod 2 =0 then
8 > Even k
9: Compute SS « (1/2") - w(K, cond, 2k) - Zeta(K, cond, 1 — 2k)
10: else
11: > Odd k
12: Compute SS + (—1)" - w(K, cond, 2k) - Zeta(K, cond, 1 — 2k)
13: end if
14: else
15: Compute k + (n+1)/4
16: if £k mod 2 =0 then
17: > Even k
18: Compute SS + w(K, cond, 2k)
19: else
20: > Odd k
21: Compute SS + 2" - w(K, cond, 2k)
22: end if
23: end if

24: return round(SS)

25: end function

Algorithm 14 Compute Scaled Value for K-group

1: Input: Number field K, conductor cond, integer n
2: Output: Scaled rational value
3: function OMG(K, cond,n)
4 Compute degree r + deg(K)
5: Compute k + |[(n+2)/4]
6 if k is even then

7 > Even case
8 Compute SS + w(K,cond, 2k)/2"

9

else
10: > Odd case
11: Compute SS « (—1)" - w(K, cond, 2k)
12: end if

13: return Q(R(SS))
14: end function
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Algorithm 15 Compute Size of Higher Even K-groups

1: Input: Number field K, conductor cond, prime p, integers k, n
2: Output: Size of K-group
3: function KS1zEPPOWER(K, cond, p, k,n)
4: Compute degree r +— deg(K)
5 Compute a < |(n+ 2)/4]
6: Create Dirichlet group G < DirichletGroup(cond)
7 Collect characters < {x € G | x.multiplicative_order() € {1,p}}
8 Compute subfields Subfields «— K.subfields()
9: Initialize empty list inter
10: > Collect subfields of degree p

11: for each subfield S € Subfields do
12: if deg(S) = p then

13: Append S to inter

14: end if

15: end for

16: Initialize prod < 1

17: > Compute Zeta value
18: for each x € characters do

19: prod < prod - (—x.primitive_character().bernoulli(2a)/(2a))

20: end for

21: prod « prod - ¢(1 — 2a)linter/—1

22: Initialize ww + 1

23: > Compute product of w;(F)
24: for each 7 € inter do

25: ww  ww - OMG(¢, i.conductor(), n)

26: end for

27: > Compute denominator
28: denominator < KZ(n)(?’k —p)/(p—1)

29: return prod - ww/denominator

30: end function

A.3. KSizeppower (K, cond, p, k, n).



ON EVEN K-GROUPS OF RINGS OF INTEGERS OF REAL ABELIAN FIELDS 23

APPENDIX B. EXAMPLES

This appendix introduces three methods for computing the size of higher even K-groups, each tailored to specific types of number
fields. The major distinction among these methods lies in how the special values of the Dedekind zeta function are computed. While
software like SageMath and Magma provide built-in functions for numerical approximations of these values, we aim to compute
them exactly as fractions. The first method is designed for fields whose degrees are p-powers, leveraging their specific arithmetic
structures. The second method applies to fields of higher degree or those whose degrees are not p-powers, where the associated
Dirichlet character must be manually input from the LMFDB to ensure precise fractional computation. Finally, for the quadratic
case, we provide a simplified approach using Siegel’s formula and also offer a faster method to calculate w;(F'), enhancing efficiency
while maintaining exactness. Together, these methods form a comprehensive framework for rigorously determining K-group sizes
across various field types.

The first method is the most general and theoretically works for every totally real abelian number field. The primary difference
from the first method lies in the computation of the Dedekind zeta function, where the associated Dirichlet character must be
manually input from the LMFDB to obtain the special values. While this generality ensures broad applicability, the computation
of w;(F) can become significantly slower as the degree of the field increases, due to the amplified complexity and computational
effort required. To illustrate this method, we include an example of computing the Dedekind zeta value for a degree 21 field,

highlighting both its flexibility and the challenges posed by high-degree fields.

LisTING 1. Computing special value of Dedekind Zeta function for Q(z?! — 7220 — 702 +
46228 4+ 2135217 — 12411216 — 3661021° + 1750442 + 373940213 — 140366122 — 2218069z +
6566007210 + 69822342° — 1790782728 — 944872927 + 265488442 + 6865812° — 16732429z +
528164723 4+ 171704422 — 5734402 — 71167)

from sage.modular.dirichlet import DirichletCharacter

=]
]

DirichletGroup (637, base_ring=CyclotomicField(2))

=
]

H._module

chil = DirichletCharacter (H, M([0,0]))

from sage.modular.dirichlet import DirichletCharacter

e o]
[

DirichletGroup (637, base_ring=CyclotomicField (42))

M = H._module

chi2 = DirichletCharacter (H, M([6,28]))

7 from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup (637, base_ring=CyclotomicField (14))

=
[}

H._module

chi3 = DirichletCharacter (H, M([10,0]))
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from sage.modular.dirichlet import DirichletCharacter

fa o]
[

DirichletGroup (637, base_ring=CyclotomicField(6))

M = H._module

chi4 = DirichletCharacter (H, M([0,2]))

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup (637, base_ring=CyclotomicField (42))

M = H._module

chi5 = DirichletCharacter (H, M([36,28]))

from sage.modular.dirichlet import DirichletCharacter

=]
]

DirichletGroup (637, base_ring=CyclotomicField (42))

M = H._module

chi6 = DirichletCharacter (H, M([24,14]))

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup (637, base_ring=CyclotomicField (14))

M = H._module

chi7 = DirichletCharacter (H, M([6,0]))

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup (637, base_ring=CyclotomicField (42))

M = H._module

chi8 = DirichletCharacter (H, M([30,14]))

from sage.modular.dirichlet import DirichletCharacter

7 H = DirichletGroup (637, base_ring=CyclotomicField (42))
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M = H._module

chi9 = DirichletCharacter (H, M([24,28]))

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup (637, base_ring=CyclotomicField (14))

7 M = H._module

chil0 = DirichletCharacter (H, M([2,0]))

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup (637, base_ring=CyclotomicField (42))

M = H._module

chill = DirichletCharacter (H, M([12,28]))

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup (637, base_ring=CyclotomicField (14))

3 M = H._module

chil2 = DirichletCharacter (H, M([12,0]))

from sage.modular.dirichlet import DirichletCharacter

=]
(]

DirichletGroup (637, base_ring=CyclotomicField (42))

M = H._module

chil3 = DirichletCharacter (H, M([6,14]))

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup (637, base_ring=CyclotomicField(6))

M = H._module

chil4 = DirichletCharacter (H, M([0,4]))

25
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from sage.modular.dirichlet import DirichletCharacter

=]
(]

DirichletGroup (637, base_ring=CyclotomicField (14))

7 M = H._module

chilb = DirichletCharacter (H, M([8,0]1))

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup (637, base_ring=CyclotomicField (42))

M = H._module

chil6 = DirichletCharacter (H, M([36,14]))

from sage.modular.dirichlet import DirichletCharacter

=]
]

DirichletGroup (637, base_ring=CyclotomicField (42))

3 M = H._module

chil7 = DirichletCharacter (H, M([18,14]))

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup (637, base_ring=CyclotomicField (42))

M = H._module

chil8 = DirichletCharacter (H, M([30,28]))

from sage.modular.dirichlet import DirichletCharacter

7 H = DirichletGroup (637, base_ring=CyclotomicField (14))

M = H._module

chil9 = DirichletCharacter (H, M([4,0]))

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup (637, base_ring=CyclotomicField (42))
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M = H._module

chi20 = DirichletCharacter (H, M([18,28]))

from sage.modular.dirichlet import DirichletCharacter

j==]
]

DirichletGroup (637, base_ring=CyclotomicField (42))
M = H._module

chi21 = DirichletCharacter (H, M([12,14]))

CHI = [chil,chi2,chi3, chi4, chib, chi6, chi7,chi8,chi9, chil0, chill, chil2, chil3, chiil4,
chilb, chil6, chil7,chil8,chil9, chi20, chi21]

CChi=[]
for i in CHI:
CChi.append(i.primitive_character())

prod =1

for i in CChi:

prod*=-i.bernoulli (2)/2

For quadratic fields, we employ Siegel’s formula to compute the special values of the Dedekind zeta function. Furthermore, we
introduce a faster method to compute w;(F'), optimizing the process while maintaining the accuracy required to determine the

sizes of the K groups. This specialized approach significantly improves computational efficiency in the quadratic case.

LisTING 2. Computing special value of Dedekind Zeta function using Siegel’s formula

# Define a power series ring over rational numbers

R.<q> = QQ[[’q’1]

# Compute Eisenstein series g-expansions with given normalization and precision

F4 = eisenstein_series_qexp(4, 4000, normalization=’constant’) # Eisenstein series of weight
4

F6 = eisenstein_series_qexp(6, 4000, normalization=’constant’) # Eisenstein series of weight

6

# Define the discriminant modular form Delta as a combination of F4 and F6

Delta = (F4°3 - F672) / 1728

def T(h):

wun
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Computes a modular form T(h) based on Delta and Eisenstein series of various weights.
:param h: Integer, typically the weight of the modular form.

:return: A g-expansion of the modular form T(h).

nnn

if Mod(h, 12) == 2:
r = floor(h / 12)
else:
r = floor(h / 12) + 1
k =12 * r - h + 2 # Compute the required weight for the Eisenstein series
if k == 0
T = Delta~(-r) # Case where k = 0, use only powers of Delta
else:
G = eisenstein_series_qexp(k, r + 1, normalization=’constant’) # Eisenstein series
weight k

T = G * Delta~(-r) # Combine with Delta

return T + 0(q) # Return the truncated g-expansion

b(1, h):

nnn

Compute the normalized coefficient b_j(h).

:param 1: Index of the coefficient to retrieve.
:param h: Weight parameter for T(h).

:return: thew value of b_j(h).

nnn

C = T(h).coefficients() # Get coefficients of T(h)
L

len(C) # Total number of coefficients

return -C[L - 1 - 1] / C[L - 1] # Return normalized coefficient

eSiegel (D, j):

nnn

Computes the Siegel-type divisor sum for a given discriminant D and exponent j.
:param D: Discriminant.

:param j: Exponent for the divisor function.

:return: Siegel sum value.

win

haha = 0

bla = 0

# Compute first term where D/4 is an integer
if D / 4 in ZZ:
for i in divisors(round(D / 4)):

haha += 1i7j

of
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57 # Compute second term for values b where (D - b"2)/4 is an integer
58 for b in range (1, floor(sqrt(D)) + 1):

59 if (D - ~2) / 4 in ZZ:

60 for i in divisors(round((D - b~2) / 4)):

61 bla += i7j

63 return haha + 2 * bla

65 def S(F, 1, m):

67 Computes a sum involving Kronecker symbols and Siegel sums for a field F.
68 :param F: A quadratic field.

69 :param 1: Integer parameter.

70 :param m: Integer parameter.

71 :return: The computed sum.

72 nnn

73 sum = 0

74 D = F.discriminant () # Discriminant of the quadratic field

76 # Iterate over divisors of 1

77 for j in divisors(l):

78 sum += kronecker_symbol(D, j) * j~(2 * m - 1) x eSiegel((l1 / j)~2 * D, 2 * m - 1)
7¢

80 return sum

82 def Zeta(D, s):

]3 nnn

84 Computes a zeta-like function for a totally real quadratic field with discriminant D.
85 :param D: Discriminant of the quadratic field.
86 :param s: An integer parameter.

:return: Zeta value.

88 nnn
89 F = QuadraticField(D) # Create the quadratic field
90 r = 2 # Degree of the field (always 2 for quadratic fields)

91 (1 - s) / 2 # Parameter derived from s

93 # Determine the range for summation based on k*r modulo 6
94 if Mod(k * r, 6) == 1:

floor(k * r / 6)

95 C

96 else:

97 c floor(k *x r / 6) + 1
98

99 sum = 0
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100

101 # Compute Dedekind zeta function as in Theorem 4.1

102 for j in range(l, c + 1):

103 sum += b(j, 2 * k * r) * S(F, j, k)

104

105 return 2°r * sum # Multiply by 2°r and return the result
106

107

108

109

110 def w(K, i):

111 e

112 Computes w_j(F) for real quadratic fields.

113 :param K: A number field, typically quadratic.

114 :param i: An integer parameter used to determine specific properties of the primes.
115 :return: w_j(F).

116 nnn

117 listl = []

119 # Collect primes satisfying (i / (ell - 1)) in Z

120 for ell in list(primes(2, i + 2)):

121 if (i / (ell - 1)) in ZZ:

122 listl.append(ell)

123

124 # Remove 2 from listl to handle it separately

125 listl = [ell for ell in 1listl if ell != 2]

126

127 # Determine additional primes based on k = 2 * i and specific divisibility criteria
128 k=2 % i

129 list2 = []

130 for ell in list(primes(2, 2 * i + 2)):
131 if (k / (ell - 1)) in ZZ and (i / (ell - 1)) not in ZZ:
132 list2.append(ell)

134 # Compute the product based on the properties of listl and 1list2

135 prod = 1

136 for ell in 1listil:

137 if (i / ell) not in ZZ:

138 prod *= ell # Multiply by prime
139 else:

140 prod *= ell**(i.valuation(ell) + 1) # Adjust power based on valuation

142 # Handle the contribution from 2 separately

143 prod *= 2xx(i.valuation(2) + 2)
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145 # Additional adjustment for primes in list2

146 for ell in 1list2:

147 if K == QuadraticField(ell): # Check if K matches a specific quadratic field
148 prod *= ell**(i.valuation(ell) + 1)

149

150 # Adjust for special cases where K is QuadraticField(2) or QuadraticField (8)

151 if K == QuadraticField(2) or K == QuadraticField (8):

152 prod = 2 * prod

153

154 return prod

157 def KSize (XK, n):

158 e

159 Computes the size of higher even K-groups for the field K and parameter n.
160 :param K: A number field.

161 :param n: An integer parameter related to the K-group.
162 :return: The computed size as an integer.

163 e

164 r = K.degree() # Degree of the field

165 D = K.discriminant () # Discriminant of the field

166

167 # Case when n is even

168 if n % 2 == 0:

169 k = (n+ 2) // 4

170 if k % 2 == 0: # k is even

171 SS = (1 / (2°r)) * w(K, 2 * k) * Zeta(D, 1 - 2 * k)
172 else: # k is odd

173 SS = (-1)"r * w(K, 2 * k) * Zeta(D, 1 - 2 % k)
174

175 # Case when n is odd

176 else:

177 k= (n+ 1) // 4

178 if k 4 2 == 0: # k is even

179 SS = w(K, 2 * k)

180 else: # k is odd

181 SS = 2°r * w(K, 2 * k)

182

183 return round(SS) # Return the rounded result

For p-elementary abelian totally real fields, our code leverages the specific arithmetic properties of these fields to compute
the size of higher even K-groups efficiently, directly utilizing the structured relationship between the field and its Dedekind zeta

function.
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LisTING 3. Code for computing size of higher even K-groups

def is_subfield(K, L):

nnn

Checks if K is a subfield of L by verifying the existence of embeddings.

:param K: A number field or

MENG FAI LIM AND CHAO QIN

similar algebraic structure.

:param L: A number field into which embeddings are checked.

:return: True if K embeds into L, otherwise False.

nnn

return len(K.embeddings (L))

>0

#Computes w_i(K) based on Propsition 4.2

def w(K, cond, i):
nnn
Computes a weighted product

:param K: A number field.

of prime powers for a given number field and conditions.

:param cond: An integer condition, e.g., conductor of a field.

:param i: An integer parameter used in the calculations.

:return: A product based on

nnn

r = K.degree() # Degree of
listl = []

certain arithmetic properties of K and i.

the number field K.

# Collecting primes that satisfy specific congruence properties.

for ell in prime_range (2, i
if i % (ell - 1) == 0:
listl.append(ell)

prod = 1

# Case 1: K is a subfield of QuadraticField(2) and QuadraticField (8)
if is_subfield(QuadraticField(2), K) and is_subfield(K, QuadraticField(8)):

for ell in 1listl:
prod *= ell *x (1 +

# Case 2: K is related to a
elif r % 2 == 1 and cond ==

for ell in listil:
prod *= ell *x (1 +

# Case 3: K is related to a
elif s_prime(cond) and cond
list2 = [ell for ell in

+ 2):

(4 * i).valuation(ell))

CyclotomicField of degree r~2

r k% 2:

(2 * r * i).valuation(ell))

CyclotomicField of a prime conductor

h 2 == 1:
listl if ell != 2 and ell != cond]
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for ell in list2:

prod *= ell *x (1 + (i / 2).valuation(ell))
if (i * r) % (cond - 1) == 0:
prod = 2 *x (3 + (i / 2).valuation(2)) * cond ** (1 + (i / 2).valuation(cond)) =*
prod
ENEEE

prod = 2 *x (3 + (i / 2).valuation(2)) * prod

# Default case
else:
for ell in 1listl:
prod *= ell *x (1 + (2 * i).valuation(ell))

return prod

#The following function computes the special value of the Dedekind Zeta function for number

field K.

) #But in this case, it only deals with the fields with p degrees.

#We also have a general version which deals with any fields. (see appendix xxx)
def Zeta(K, cond, s):

Computes a modified zeta function for the number field K.

:param K: A number field.

:param cond: An integer condition, typically related to the field’s conductor.

:param s: A negative integer.

:return: The special value of Dedekind Zeta fucntion of K.

W

n=1-3=s

deg = K.degree() # Degree of the field.

G = DirichletGroup (cond)

Lval = 1

Lval = -QuadraticBernoulliNumber(n, cond) / n
chi = G.0°(ZZ(G.order () / deg))
for i in (1..deg - 1):

Lval *= (-(chi~i).bernoulli(n) / n)

return zeta(s) * Lval
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86 #Computes the size of even K group of ring of integers of the field K using Theorem 2.3 and
Corollary 2.4.
37 def KSize(K, cond, n):

88 e

89 Computes the size of even K group of ring of integers of the field K.
90 :param K: A number field K.

91 :param cond: An integer condition, typically a conductor.

92 :param n: An integer parameter.

93 :return: The computed size.

94 e

95 r = K.degree ()

96

97 if n % 2 == 0

98 k= (n + 2) // 4

99 if k %4 2 == 0:

100 SS =1 / (2x*xr) * w(K, cond, 2 * k) * Zeta(K, cond, 1 - 2 * k)
101 else:

102 SS = (-1)**xr * w(K, cond, 2 * k) * Zeta(K, cond, 1 - 2 * k)
103 else:

104 k= (n+ 1) // 4

105 if k %4 2 == 0:

106 SS = w(X, cond, 2 * k)

107 else:

108 SS = 2%xr *x w(K, cond, 2 * k)

109

110 return round (SS)

111

112

113 #This function computes size of even K groups of Z, which appeared in Theorem 4.1.
114 def KZ(mn):

115 nnn

116 Computes size of even K groups of Z, which appeared in Theorem 4.1.

117 :param n: An integer.

118 :return: A scaling factor based on Bernoulli numbers and prime valuations.
119 o

120 ZZ = IntegerRing()

121

122 if n % 8 == 2:

123 k = ZZ((n - 2) / 8)

124 s =2 % k + 1

125 ¢ = bernoulli(2 * s) * w(QQ, 1, 2 *x s) / (4 x s)

126 return abs(2 * c)

127 elif n % 8 == 6:

128 k = ZZ((n - 6) / 8)
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2 x k + 2
bernoulli(2 * s) * w(QQ, 1, 2 *x s) / (4 * s)

129 S

130 c

131 return abs(c)

132

133

134 #If E is a totally real Galois extension of Q and Galois group is p-elementary,

135 #then given a list of intermediate field of E and a list of associated conductors of these
intermediate fields.

136 #We can compute the size of even K groups of ring of integers of E by the formula in Theorem
4.1.

137 def MultiSize(listl, 1list2, n):

138 e

139 Computes a combined size metric over multiple fields and conditions.

140 :param listl: A list of intermediate fields.

141 :param 1list2: A list of conductors corresponding to the intermediate fields.

142 :param n: An integer n=2k.

143 :return: Size of the K-group for number field E.

144 e

145 prod = 1

146 p = list1[0].degree() # Degree of the first field.

147 k = 2 # Degree from Galois group.

149 # Compute the product of sizes for each field in the list.

150 for i in range(len(listl)):

151 prod *= KSize(list1[il], 1list2[il], n)

152

153 # Normalize by a scaling factor.

154 return prod / (KZ(n)x*x((p*xk - p) // (p - 1)))
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