ON EVEN K-GROUPS OF RINGS OF INTEGERS OF REAL ABELIAN FIELDS

MENG FAI LIM AND CHAO QIN

ABSTRACT. We present approaches for calculating the precise orders of the algebraic K-groups $K_{4n-2}(\mathcal{O}_K)$ for a totally real abelian K. Along the way, we also establish a formula connecting the order of $K_{4n-2}(\mathcal{O}_E)$ of a totally real p-elementary field E to its intermediate cyclic p-degree fields. Additionally, we have compiled a list of values pertaining to these K-groups. Given the substantial space that these data would occupy, the list has not been incorporated into the paper. We encourage interested readers to consult the supplement document or the arXiv version of the paper, where these compiled list of values can be found.

1. Introduction

For a ring R, we let $K_i(R)$ denote the algebraic K-groups of R in the sense of Quillen [15]. Thanks to the pioneering work of Quillen [15], Garland [7], and Borel [2], we now know that the even K-groups of the ring of integers of a number field are finite. However, these foundational results provide limited insight into the precise orders of these groups. It was the conjecture proposed by Birch and Tate that initially provided an approach to understanding the order of $K_2(\mathcal{O}_F)$ by evaluating the Dedekind zeta function of the field F at s = -1. This conjecture was later generalized by Lichtenbaum [11, 12] to include the higher even K-groups. Coates [6] then provided a crucial link by suggesting that this conjecture could be attacked using the main conjecture of Iwasawa theory [9], an insight that has been pivotal in establishing the conjecture for totally real abelian fields and forms the backbone of our computational approaches. Since then, significant progress has been made towards establishing this conjecture, particularly notable in the case of a totally real abelian field.

Building on these conjectures, Browkin and his collaborators [3, 4, 5] have gone a long way into computing the precise order of $K_2(\mathcal{O}_F)$ for quadratic fields and specific classes of cubic fields (also see the work of Zhou [26]). The primary objective of this paper is to continue this line of study by exploring the computation of the order of higher even K-groups, specifically $K_{4k-2}(\mathcal{O}_F)$. More precisely, we discuss three different approaches for calculating the order of higher even K-groups, with each being particularly suited to certain types of number fields. The primary difference between these methods lies in the technique used to compute the special values of the Dedekind zeta function. Although most software tools offer built-in functions for numerical approximations of these values, our objective is to compute them exactly as fractions.

Our first approach applies in principle to all totally real abelian fields F. Leveraging the Artin formalism for L-functions, we establish a connection between the value $\zeta_F(1-2k)$ and a suitable product involving generalized

¹⁹⁹¹ Mathematics Subject Classification. 11R42, 11R70, 19F27.

 $Key\ words\ and\ phrases.$ Even K-groups, real multi-quadratic fields, totally real p-elementary fields.

M. F. Lim's research is partially supported by the Fundamental Research Funds for the Central Universities No. CCNU25JCPT031.

Chao Qin's research is supported by the National Natural Science Foundation of China under Grant No. 12001546 and Heilungjiang Province under Grant No. 3236330122.

Bernoulli numbers. Subsequently, we proceed to compute each of these generalized Bernoulli numbers individually. For this step, the associated Dirichlet character must be manually inputted from the LMFDB to ensure a precise fractional computation. We demonstrate this entire procedure in the body of the paper through a concrete example (see Appendix B). The second method is specifically for the real quadratic fields and is based on a formula of Siegel-Zagier. For this, we provide a simplified approach using Siegel-Zagier's formula and also offer a faster method to calculate $w_j(F)$, improving efficiency without compromising on obtaining exact values. This will be elaborated upon in Section 3.

The third approach is specifically tailored for a p-elementary totally real abelian field E, in which the Galois group $\operatorname{Gal}(E/\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^{\oplus n}$ for some prime p and positive integer n. The key to this approach is the following theorem on which it relies.

Theorem 1.1 (Theorem 4.1). Let p be a prime and n an integer ≥ 2 . Suppose that E is a totally real abelian extension of \mathbb{Q} with Galois group $G = \operatorname{Gal}(E/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^{\oplus n}$. Let $K_1, K_2, \ldots, K_{\frac{p^n-1}{p-1}}$ denote all the p-degree extensions of \mathbb{Q} contained in E. Then we have the following equality

$$|K_{4k-2}(\mathcal{O}_E)| = \frac{1}{|K_{4k-2}(\mathbb{Z})|^{\frac{p^n-p}{p-1}}} \prod_{j=1}^{\frac{p^n-1}{p-1}} |K_{4k-2}(\mathcal{O}_{K_j})|.$$

The proof of the theorem will be given in Section 4. From a computational point of view, this result is rather advantageous to have. For instance, if we want to compute the size of K_{4n-2} -groups of the ring of integers of $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})$, it suffices to compute those for the intermediate quadratic fields $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{5})$, $\mathbb{Q}(\sqrt{6})$, $\mathbb{Q}(\sqrt{10})$, $\mathbb{Q}(\sqrt{15})$, $\mathbb{Q}(\sqrt{30})$, as well as for \mathbb{Q} . After obtaining these values, we can simply plug them into the formula provided by the aforementioned theorem.

1.1. Potential direction for future research.

- Our results are promising, showing feasibility for selected classes of fields of larger degrees, as evidenced by our comprehensive compilation of K-group values, which extends over nearly 90 pages (omitted from the main text but available in the arXiv version). We hope to continue this line of study and extend our calculations to more extensive classes of number fields in a future work.
- It is natural to ask what we can do with the comprehensive collection of K-groups values obtained. One direction we hope to study in the near future is to examine the Galois module structure of the K-groups as module over the Galois group of the number field relative to $\mathbb Q$ building on our present numerical data. To the best knowledge of the authors, while the existing literature already contains a substantial amount of theoretical research (with on-going advancement made even now) on this topic, when it comes to numerical computation or specific methods determination in this regard, we have yet come across any relevant studies.

Acknowledgement. The collaboration began at a workshop at Harbin Institute of Technology in 2022. The authors extend their gratitude to Jun Wang and Yichao Zhang for organizing the workshop and for the insightful discussions that took place during the paper's preparation. Part of this research was conducted during the first author's multiple visits to Harbin Engineering University and the second author's visits to Central China Normal University. We would like to express our appreciation to both universities for their warm hospitality. We are

particularly grateful to Daniel Delbourgo for his valuable insights, keen interest, and ongoing encouragement, all of which have been instrumental in advancing this work.

2. K-Groups and Dedekind zeta function

We begin with a brief and quick review of the definition of the higher K-groups. Let R be a ring with identity. For each integer $m \geq 1$, denote by $GL_m(R)$ the group of invertible $m \times m$ matrices with entries in R. We then set $GL(R) = \varinjlim_{m} GL_m(R)$, where the transition map $GL_m(R) \longrightarrow GL_{m+1}(R)$ is given by

$$A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}.$$

Let BGL(R) be the classifying space of the group GL(R), i.e., BGL(R) is an Eilenberg-MacLane space of type (GL(R), 1) in the sense of [18, Section 8.1]. Up to homotopy equivalence, this space is characterized by the property that it is path-connected with homotopy groups

$$\pi_n(\mathrm{BGL}(R)) \cong \begin{cases} \mathrm{GL}(R), & \text{for } n = 1, \\ 0, & \text{for } n \ge 2. \end{cases}$$

From the space BGL(R), one obtains a new space, denoted by $BGL(R)^+$, via the +-construction of Quillen (see [14, 15]). The higher K-groups $K_n(R)$ are then defined by

$$K_n(R) := \pi_n \big(\mathrm{BGL}(R)^+ \big).$$

It's well-known that Quillen's construction recovers the classical K_1 -groups of Bass and K_2 -groups of Milnor (for instance, see [23, Chapter IV]).

In this paper, we are interested in the K-groups of the ring \mathcal{O}_F , where \mathcal{O}_F is the ring of integers of a number field F. As a start, we recall the following fundamental results of Quillen and Borel.

Theorem 2.1. The groups $K_n(\mathcal{O}_F)$ are finitely generated for all $n \geq 1$. Furthermore, one has

$$\operatorname{rank}_{\mathbb{Z}}(K_n(\mathcal{O}_F)) = \begin{cases} r_1(F) + r_2(F), & \text{if } n \equiv 1 \pmod{4}, \\ r_2(F), & \text{if } n \equiv 3 \pmod{4}, \\ 0, & \text{if } n \text{ is even.} \end{cases}$$

Here $r_1(F)$ (resp., $r_2(F)$) is the number of real embeddings (resp., number of pairs of complex embeddings) of the number field F.

Proof. Quillen [15] was the first to establish that these K-groups are finitely generated. Subsequently, calculations of Borel [2] confirmed the ranks of the K-groups as stated in the theorem. We should also mention that prior to the works of Qullen and Borel, the finiteness of $K_2(\mathcal{O}_F)$ has been proven by Garland [7].

Unfortunately, the results of Quillen and Borel do not provide a means to determine the exact order of the even K-groups $K_{2i}(\mathcal{O}_F)$. It was only due to the remarkable insight of Birch, Tate and Lichtenbaum [11, 12] that one can hope to understand these orders via special values of Dedekind zeta function, a concept we will now outline briefly. Let $\zeta_F(s)$ be the Dedekind zeta function of F. This function, $\zeta_F(s)$, admits an analytic continuation to the whole complex plane, with the exception of a simple pole at s = 1. Consequently, it makes

sense to speak of $\zeta_F(1-2k)$ for a positive integer k. Thanks to the collective gallant efforts of numerous mathematicians, we have the following.

Theorem 2.2. Let F be a totally real abelian number field of degree $r (= r_1(F))$. Then for every integer $k \ge 1$, we have

$$\zeta_F(1-2k) = (-1)^{kr} 2^r \frac{|K_{4k-2}(\mathcal{O}_F)|}{|K_{4k-1}(\mathcal{O}_F)|}.$$

Proof. Lichtenbaum [11] first formulated this conjecture up to a power of 2. Subsequently, the work of Coates [6] suggested that one might possibly attack this conjecture via the main conjecture of Iwasawa [9]. Building on this insight, Bayer and Neukirch [1] showed that the main conjecture of Iwasawa implies a cohomological version of Lichtenbaum's conjecture (for a detailed exposition of this cohomological version, readers are referred to [1]). Notably, this cohomological formulation is equivalent to the K-theoretical version, a connection established by the Quillen-Lichtenbaum conjecture. This conjecture is now a theorem, being a consequence of the groundbreaking work of Rost-Voevodsky ([20]; see also Rognes-Weibel [16]). Prior to these developments, the main conjecture of Iwasawa has already been proven by by Mazur-Wiles [13] and Wiles [24].

The value $|K_{4k-1}(\mathcal{O}_F)|$ can be described rather easily. Let μ_{∞} be the group of all the roots of unity of \bar{F} , where \bar{F} is the algebraic closure of F. For an integer $j \geq 1$, we write $\mu_{\infty}^{\otimes j}$ for the j-fold tensor product of μ_{∞} with $\mathrm{Gal}(\bar{F}/F)$ acting diagonally. Set $w_j(F)$ to be the order of $(\mu_{\infty}^{\otimes j})^{\mathrm{Gal}(\bar{F}/F)}$. The following gives a relation of $|K_{4k-1}(\mathcal{O}_F)|$ in terms of these values.

Theorem 2.3. Let F be a totally real abelian number field of degree r. Then for every integer $k \geq 1$, we have

$$|K_{4k-1}(\mathcal{O}_F)| = \begin{cases} 2^r w_{2k}(F), & \text{if } k \text{ is odd,} \\ w_{2k}(F), & \text{if } k \text{ is even.} \end{cases}$$

Proof. See [23, Chap. VI, Theorem 9.5].

Combining the above theorems, we have the following observation.

Corollary 2.4. Let F be a totally real abelian number field of degree r. Then for every integer $k \geq 1$, we have

$$|K_{4k-2}(\mathcal{O}_F)| = \begin{cases} (-1)^r w_{2k}(F) \zeta_F(1-2k), & \text{if } k \text{ is odd,} \\ \frac{1}{2r} w_{2k}(F) \zeta_F(1-2k), & \text{if } k \text{ is even.} \end{cases}$$

In principle, the values of $w_{2k}(F)$ can be determined rather easily (for instances, see [23, Chap. VI, Propositions 2.2 and 2.3]). Consequently, the main challenge lies in calculating the values of $\zeta_F(1-2k)$. For number fields of small degree, these can be computed via bulit-in functions in mathematical software programs. However, even in the case of a real quadratic field, the computed values are not exact when the discriminant of the real quadratic number field F becomes large. In this context, computing $\zeta_F(-19)$ often leads to a loss of significant digits. In the subsequent discussion of the paper, we will outline strategies to circumvent this issue. To begin with, we introduce the following approach that utilizes generalized Bernoulli numbers.

Let F be an abelian totally real number field with Galois group $G = \operatorname{Gal}(F/\mathbb{Q})$. By Artin formalism, we have

$$\zeta_F(1-2k) = \zeta(1-2k) \prod_{\chi \neq \chi_0} L(\chi, 1-2k)$$

where χ runs through all the nontrivial characters of G. It's well-known that

$$\zeta(1-2k) = -\frac{B_{2k}}{2k}$$
 and $L(\chi, 1-2k) = -\frac{B_{2k,\chi}}{2k}$

(for instance, see [21, Theorem 4.2]). The above therefore gives a way to compute the $\zeta_F(1-2k)$ via generalized Bernoulli numbers. To see a specific example, we refer readers to the first listing in Appendix B.

3. Quadratic field

In this section, we shall describe a method (due to Siegel-Zagier) of computing the L-values for a totally real quadratic field. To prepare for this, we need to introduce some further notations. For a given integer $j \geq 0$ and an ideal \mathfrak{a} of \mathcal{O}_F , we define

$$\sigma_j(\mathfrak{a}) = \sum_{\mathfrak{b} \mid \mathfrak{a}} |\mathcal{O}/\mathfrak{b}|^j,$$

where the sum is taken over all nonzero ideals \mathfrak{b} of \mathcal{O}_F that divide \mathfrak{a} . In the special case where \mathcal{O}_F coincides with \mathbb{Z} , we shall simplify the notation to $\sigma(m) = \sigma(m\mathbb{Z})$. Note that in this context, we have

$$\sigma_j(m) = \sum_{d \mid m} d^j,$$

where d runs through all the positive divisors of m. Furthermore, for integers $j, k \geq 1$, we set

$$s_j^F(2k) = \sum_{\substack{\nu \in \mathfrak{d}^{-1} \\ \nu \gg 0 \\ \operatorname{tr}(\nu) = j}} \sigma_{2k-1} \big((\nu) \mathfrak{d} \big).$$

Here $\mathfrak{d} = \mathfrak{d}_F$ is the different of F and the sum is taken over all totally positive elements in \mathfrak{d} with trace j. With these notation in hand, we can now state the following formula of Siegel.

Theorem 3.1 (Siegel). Let F be a totally real number field. Then for every integer $k \geq 1$, we have

$$\zeta_F(1-2k) = 2^{|F:\mathbb{Q}|} \sum_{j=1}^r b_j(2k|F:\mathbb{Q}|) s_j^F(2k),$$

where the numbers $b_j(2k|F:\mathbb{Q}|)$ are rational and depend only on $2k|F:\mathbb{Q}|$, and the integer r is given by

$$r = \begin{cases} \left[\frac{k|F : \mathbb{Q}|}{6} \right], & \text{if } k|F : \mathbb{Q}| \equiv 1 \pmod{6}, \\ \left[\frac{k|F : \mathbb{Q}|}{6} \right] + 1, & \text{otherwise.} \end{cases}$$

Remark 3.2. Some of the values of Siegel coefficients $b_j(m)$ for $4 \le m \le 40$ can be found in [25, Table 1]. For the convenience of the readers, we provide an approach to computing these terms following [17].

For k = 4, 6, ..., we set

$$G_k(z) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$

and

$$\Delta = q \prod_{n=1}^{\infty} (1 - q^n)^{24}.$$

We then define

$$T_h = G_{12r-h+2}\Delta^{-r},$$

where

$$r = \begin{cases} \left[\frac{h}{12}\right] + 1, & h \not\equiv 2 \mod 12; \\ \left[\frac{h}{12}\right], & h \equiv 2 \mod 12. \end{cases}$$

By [17, P252, (11)], we have

$$T_h = q^{-r} + c_{h,r-1}q^{-(r-1)} + \dots + c_{h,1}q^{-1} + c_{h,0} + \dots$$

for some $c_{h,i} \in \mathbb{Q}$. Furthermore, [17, P253, Theorem 2] tells us that $c_{h,0} \neq 0$. Hence it makes sense to write

$$b_j(h) := -c_{h,j}/c_{h,0}$$

for j = 1, 2, ..., r. These are the Siegel coefficients (see [17, P254-255] or [25, P61, (26)]) that appears in Siegel's formula.

For a real quadratic number field K, Zagier has expressed Siegel's formulas in terms of certain elementary functions which we now describe. For integers $j, m \ge 1$, define

$$e_j(m) = \sum_{\substack{b^2 + 4ac = m \\ a, c > 0}} a^j.$$

We also denote by $\chi := \chi_K$ the nontrivial character of $Gal(K/\mathbb{Q})$, and extend it to a function of \mathbb{Z} in the usual way. Zagier's formula is then as follow (cf. [25, (14),(16)]).

Theorem 3.3 (Zagier). Let K be a real quadratic field with discriminant D. Then for every integer $k \geq 1$, we have

$$\zeta_K(1-2k) = 4 \sum_{j=1}^{\lfloor k/3\rfloor+1} b_j(4k) \sum_{m|j} \chi(m) m^{2k-1} e_{2k-1} ((j/m)^2 D).$$

For a list of the formula for some values of k, we refer readers to [25, Table 2]. A notable advantage of this formula lies in its ability to yield exact values of $\zeta_K(1-2k)$ for real quadratic number fields with large discriminant. Moreover, by circumventing the need for L-value calculations in software like Pari or Magma, this formula potentially eliminates the dependency on GRH.

We shall utilize the aforementioned formula to calculate the special values of the Dedekind zeta function of a real quadratic field. Furthermore, we introduce a faster method to compute $w_j(F)$, optimizing the process while maintaining the accuracy required to determine the sizes of the K groups. This approach significantly improves computational efficiency in the quadratic case (see Listing 2 in Appendix B).

4. p-elementary extensions

We are now in a position to prove the following theorem as mentioned in our introductory section.

Theorem 4.1. Let p be a fixed prime. Let E be a totally real Galois extension of \mathbb{Q} with Galois group $G = \operatorname{Gal}(E/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^{\oplus n}$ with $n \geq 2$. Denote by $K_1, K_2, ..., K_{\frac{p^n-1}{p-1}}$ all the p-degree extensions of \mathbb{Q} contained in E. Then we have

$$|K_{4k-2}(\mathcal{O}_E)| = \frac{1}{|K_{4k-2}(\mathbb{Z})|^{\frac{p^n-1}{p-1}}} \prod_{j=1}^{\frac{p^n-1}{p-1}} |K_{4k-2}(\mathcal{O}_{K_j})|$$

for every positive integer k.

Proof. For each $j=1,...,\frac{p^n-1}{p-1}$, we let $\chi_{j,r}$ be all the nontrivial character of $\operatorname{Gal}(K_j/\mathbb{Q})$, where r=1,...,p-1. When viewed as characters of $\operatorname{Gal}(E/\mathbb{Q})$, they are exactly all nontrivial characters of $\operatorname{Gal}(E/\mathbb{Q})$. By Artin formalism of L-functions, we have

$$\zeta_E(s) = \zeta(s) \prod_{j=1}^{\frac{p^n-1}{p-1}} \prod_{r=1}^{p-1} L(\chi_{j,r}, s).$$

On the other hand, we also have

$$\zeta_{K_j}(s) = \zeta(s) \prod_{r=1}^{p-1} L(\chi_{j,r}, s)$$

for each j. Hence we have

$$\zeta(s)^{\frac{p^n-p}{p-1}}\zeta_E(s) = \prod_{j=1}^{\frac{p^n-1}{p-1}}\zeta_{K_j}(s).$$

In view of the above equality and Corollary 2.4, the proposition is reduced to proving the equality

(1)
$$w_{2k}(\mathbb{Q})^{\frac{p^n-p}{p-1}} w_{2k}(E) = \prod_{j=1}^{\frac{p^n-1}{p-1}} w_{2k}(K_j).$$

If ℓ is a prime, we write $w_j^{(\ell)}(F)$ for the order of $(\mu_{\ell^{\infty}}^{\otimes j})^{\operatorname{Gal}(\bar{F}/F)}$, where $\mu_{\ell^{\infty}}$ is the group of all the ℓ -power roots of unity of \bar{F} . Plainly, one has $w_j(F) = \prod_{\ell} w_j^{(\ell)}(F)$. It therefore remains to show that

(2)
$$w_{2k}^{(\ell)}(\mathbb{Q})^{\frac{p^n-p}{p-1}}w_{2k}^{(\ell)}(E) = \prod_{j=1}^{\frac{p^n-1}{p-1}}w_{2k}^{(\ell)}(K_j)$$

for every prime ℓ . We first consider the case when the prime ℓ is odd. Since $Gal(E/\mathbb{Q})$ is not cyclic, we have either $E \cap \mathbb{Q}(\mu_{\ell}) = \mathbb{Q}$ or $E \cap \mathbb{Q}(\mu_{\ell}) = K_i$ for some unique i.

Suppose that $E \cap \mathbb{Q}(\mu_{\ell}) = \mathbb{Q}$. Then we have $|L(\mu_{\ell}): L| = \ell - 1$ for $L = E, K_j, \mathbb{Q}$. If 2k is not divisible by $\ell - 1$, it follows from [23, Chap. VI, Proposition 2.2(c)] that $w_{2k}^{(\ell)}(L) = 1$ for $L = E, K_j, \mathbb{Q}$, and so equality (2) is immediate in this case. If 2k is divisible by $\ell - 1$, then [23, Chap. VI, Proposition 2.2(c)] tells us that $w_{2k}^{(\ell)}(L) = \ell^{1+b}$ for $L = E, K_j, \mathbb{Q}$, where b is the highest power of ℓ dividing 2k. This again verifies the equality (2).

Now, without loss of generality, suppose that $E \cap \mathbb{Q}(\mu_{\ell}) = K_1$. In other words, K_1 is contained in $\mathbb{Q}(\mu_{\ell})$ with $\ell \equiv 1 \pmod{2p}$. If 2k is not divisible by $(\ell-1)/p$, it follows from [23, Chap. VI, Proposition 2.2(c)] that $w_{2k}^{(\ell)}(L) = 1$ for $L = E, K_j, \mathbb{Q}$, thus verifying the equality (2). In the event that 2k is divisible by $\ell - 1$, a similar argument as in the previous paragraph yields the required equality (2). Therefore, it remains to consider the case where 2k is divisible by $(\ell-1)/p$ but not divisible by $\ell-1$. In this case, one can directly verify that $w_{2k}^{(\ell)}(E) = w_{2k}^{(\ell)}(K_1) = \ell^{1+b}$ and $w_{2k}^{(\ell)}(\mathbb{Q}) = w_{2k}^{(\ell)}(K_j) = 1$ for $j \geq 2$. From this, we see that the equality (2) is satisfied

We now come to the situation when $\ell=2$. We first consider the case $\sqrt{2} \notin E$. Under this said assumption, the field $L(\sqrt{-1})$ does not contain any primitive 8th root of unity. Thus, it follows from [23, Chap. VI, Proposition 2.3(c)] that $w_{2k}^{(2)}(L) = 2^{2+d}$ for $L = E, K_j, \mathbb{Q}$, where d is the highest power of 2 dividing 2k. Plainly, the equality (2) is satisfied in this case. Now suppose that $\sqrt{2} \in E$. In particular, we must then have p=2. Upon relabeling, we may assume $K_1 = \mathbb{Q}(\sqrt{2})$. Note that the fields $K_1(\sqrt{-1})$ and $E(\sqrt{-1})$ will now contain a primitive 8th root of unity but the fields $\mathbb{Q}(\sqrt{-1})$ and $K_j(\sqrt{-1})$ (for $j \geq 2$) do not. Hence, from [23, Chap. VI, Proposition 2.2(c,d)] it follows that we have $w_{2k}^{(2)}(E) = w_{2k}^{(2)}(K_1) = 2^{3+d}$ and $w_{2k}^{(2)}(\mathbb{Q}) = w_{2k}^{(2)}(K_j) = 2^{2+d}$ for $j \geq 2$. Plugging these values into the equality (2), we see that the said equality holds.

The proof of the theorem is therefore complete.

Note that the asserted equality in the preceding proposition is not true if one remove the "totally real" hypothesis. Indeed, for an imaginary biquadratic field, Guo and Qin has shown that there might be an extra factor of a power of 2 (see [8, Theorem 3.5, Example 3.10]).

From a computational point of view, Theorem 4.1 is rather advantageous to have, as it streamlines the process of computing the K-group for an elementary p-extension of \mathbb{Q} by reducing it to the computation of the K-group for a cyclic p-degree extension of \mathbb{Q} . Regarding the latter task, and in light of Corollary 2.4, our focus shifts to determining the values of w_{2k} and the relevant special values. For this, we present the following useful proposition.

Proposition 4.2. Let p be a prime and $k \geq 1$. Suppose that K is a totally real number field which is a cyclic extension of \mathbb{Q} of degree p. Then the following statements are valid.

(i)
$$w_{2k}(\mathbb{Q}(\sqrt{2})) = 2^{4+v_2(k)} \prod_{\substack{l \text{ odd prime} \\ l-1|2k}} l^{1+v_l(k)} = \prod_{\substack{l \text{ prime} \\ l-1|2k}} l^{1+v_l(8k)}.$$

(ii) If the prime p is odd and $K \subseteq \mathbb{Q}(\zeta_{p^2})$, then

$$w_{2k}(K) = 2^{3+v_2(k)} p^{(2+v_p(k))\delta} \prod_{\substack{l \neq 2, p \\ l-1 \mid 2k}} l^{1+v_l(k)} = \prod_{\substack{l \ prime \\ l-1 \mid 2k}} l^{1+v_l(4pk)},$$

where
$$\delta = \begin{cases} 1, & \text{if } p-1 \mid 2k; \\ 0, & \text{otherwise.} \end{cases}$$

(iii) If K is contained in $\mathbb{Q}(\zeta_q)$ for some odd prime q, then

$$w_{2k}(K) = 2^{3+v_2(k)} q^{(1+v_q(k))\varepsilon} \prod_{\substack{l \neq 2, q \\ l-1 \mid 2k}} l^{1+v_l(k)},$$

where
$$\varepsilon = \begin{cases} 1, & \text{if } \frac{q-1}{p} \mid 2k; \\ 0, & \text{otherwise.} \end{cases}$$

(iv) For other \hat{K} 's not covered in (i) – (iii), one always has

$$w_{2k}(K) = 2^{3+v_2(k)} \prod_{\substack{l \neq 2 \\ l-1 \mid 2k}} l^{1+v_l(k)} = \prod_{\substack{l \ prime \\ l-1 \mid 2k}} l^{1+v_l(4k)}.$$

Proof. Indeed, for an odd prime p, it follows from [23, Chap. VI, Proposition 2.2] that

$$\mu_{p^{\infty}}^{\otimes i}(K) = \begin{cases} \mu_{p^{a(K)+v_p(i)}}^{\otimes i}, & \text{if } i \equiv 0 \bmod |K(\mu_p):K|, \\ 1, & \text{if } i \not\equiv 0 \bmod |K(\mu_p):K|, \end{cases}$$

where a(K) is the largest integer such that $K(\mu_p)$ contains a primitive $p^{a(K)}$ th root of unity. For p=2 and even i, an application of [23, Chap. VI, Proposition 2.3(c)] tells us that

$$\mu_{2^\infty}^{\otimes i}(K) = \mu_{2^{c(K)+v_2(i)}}^{\otimes i}$$

where c(K) is the largest integer such that $K(\sqrt{-1})$ contains a primitive $2^{c(K)}$ th root of unity. (Note that our number field K is totally real and so is an exceptional one in the sense of the proposition loc. cit.) The conclusions of the proposition now follow from the above two observations and a case-by-case analysis.

For the code designed for the computation of even K-groups within the context of a p-elementary extension, see Listing 3 in Appendix B.

5. Periodicity of p-rank

Let K be an real quadratic field. Recall that for integers $j, m \geq 1$, we have defined

$$e_j(m) = \sum_{\substack{b^2 + 4ac = m \\ a, c > 0}} a^j.$$

Plainly, one has $e_1(D) \equiv e_3(D) \pmod{3}$. On the other hand, we have

$$|K_{2}(\mathcal{O}_{K})| = \begin{cases} \frac{4}{5}e_{1}(8), & K = \mathbb{Q}(\sqrt{2}), \\ 2e_{1}(5), & K = \mathbb{Q}(\sqrt{5}), \\ \frac{2}{5}e_{1}(D), & \text{otherwise.} \end{cases} |K_{6}(\mathcal{O}_{K})| = \begin{cases} e_{3}(8), & K = \mathbb{Q}(\sqrt{2}), \\ \frac{1}{2}e_{3}(D), & \text{otherwise.} \end{cases}$$

Therefore, it follows that $|K_2(\mathcal{O}_K)|$ is divisible by 3 if and only if $|K_6(\mathcal{O}_K)|$ is divisible by 3. Indeed, we shall see that there is a general reasoning underlying this observation which will be elucidated in the subsequent theorem.

Theorem 5.1. Let F be a number field. Then we have

$$\operatorname{rank}_{\mathbb{Z}/p\mathbb{Z}}\left(K_{2i}(\mathcal{O}_F)\right) = \operatorname{rank}_{\mathbb{Z}/p\mathbb{Z}}\left(K_{2i'}(\mathcal{O}_F)\right),\,$$

whenever $i \equiv i' \pmod{|F(\mu_p):F|}$.

Proof. Although this fact might be well-known among experts but for the convenience of the readers, we shall provide a brief outline of the proof here. By the work of Rost and Voevodsky [20], there is an identification

$$K_{2k}(\mathcal{O}_F)/p \cong H^2(\operatorname{Gal}(F_{S_p}/F)), \mu_p^{\otimes (k+1)}),$$

where F_{S_p} is the maximal algebraic extension of F unramified outside the set of primes of F above p.

If $j \equiv 0 \mod [F(\mu_p):F]$, then the Galois group $\operatorname{Gal}(F_{S_p}/F)$ acts trivially on $\mu_p^{\otimes j}$. Therefore, it follows that

$$K_{2k}(\mathcal{O}_F)/p \cong H^2\left(\operatorname{Gal}(F_{S_p}/F)), \mu_p^{\otimes (k+1)}\right)$$

$$\cong H^2\left(\operatorname{Gal}(F_{S_p}/F)), \mu_p^{\otimes (k'+1)}\right) \otimes \mu_p^{\otimes (k-k')}$$

$$\cong K_{2k'}(\mathcal{O}_F)/p \otimes \mu_p^{\otimes (k-k')},$$

whenever $k \equiv k' \mod [F(\zeta_p) : F]$. Consequently, the groups $K_{2k}(\mathcal{O}_F)/p$ and $K_{2k'}(\mathcal{O}_F)/p$ have the same rank over $\mathbb{Z}/p\mathbb{Z}$.

We return to the context of a real quadratic field K. Proposition 5.1 then tells us that the 3-rank

$$r_3(K_{4k-2}(\mathcal{O}_K))$$

is a constant function in term of k. A consequence of this is the following.

Corollary 5.2. Let K be a real quadratic field with discriminant D. Denote by χ the notrivial character of $Gal(K/\mathbb{Q})$. Then the following statements are equivalent.

- (1) $e_1(D)$ is divisible by 3.
- (2) $e_3(D)$ is divisible by 3.
- (3) $e_5(4D) + (5\chi(2) + 6)e_5(D)$ is divisible by 9.
- (4) $e_7(4D) + 19\chi(2)e_7(D)$ is divisible by 27.
- (5) $e_9(4D) + (8\chi(2) + 3)e_9(D)$ is divisible by 9.
- (6) $e_{11}(9D)$ is divisible by 3.
- (7) $e_{13}(9D)$ is divisible by 3.
- (8) $e_{15}(9D)$ is divisible by 3.

Remark 5.3. We remark that the list in the preceding corollary is far from exhaustive and goes on. One can of course apply the above discussion for other primes. For instances, for the case p = 5, then the following divisibility statements are equivalent.

- (1) $e_1(D)$ is divisible by 25.
- (2) $e_5(4D) + (7\chi(2) 1)e_5(D)$ is divisible by 25.
- (3) $e_9(4D) + (8\chi(2) + 3)e_9(D)$ is divisible by 25.
- (4) $e_{13}(9D)$ is divisible by 5.

One might naturally wonder whether these divisibility implications can be directly explained through the lens of these power sums, although we will not explore this particular subject in the current paper.

We end with another possible application of Theorem 5.1. It is a natural question to ask whether $K_{2i}(\mathcal{O}_F)[p^{\infty}]$ is cyclic for a given prime p. The following corollary gives a sufficient condition for verifying this.

Corollary 5.4. Let F be a number field. Suppose that $|K_{2i_0}(\mathcal{O}_F)[p^{\infty}]| = p$ for some i_0 . Then we have

$$r_p(K_{2i}(\mathcal{O}_F)) = 1,$$

whenever $i \equiv i_0 \pmod{|F(\mu_p):F|}$. In other words, $K_{2i}(\mathcal{O}_F)[p^{\infty}]$ is cyclic for $i \equiv i_0 \pmod{|F(\mu_p):F|}$.

References

- [1] P. Báyer and J. Neukirch, On values of zeta functions and l-adic Euler characteristics. Invent. Math. 50 (1978/79), no. 1, 35-64.
- [2] A. Borel, Stable real cohomology of arithmetic groups. Ann. Sci. École Norm. Sup. (4) 7 (1974), 235-272.
- [3] J. Browkin, Computing the tame kernel of quadratic imaginary fields (with an appendix by Karim Belabas and Herbert Gangl). Math. Comp. 69 (2000), no. 232, 1667-1683.
- [4] J. Browkin, Tame kernels of cubic cyclic fields. Math. Comp. 74 (2005), no. 250, 967-999.
- [5] J. Browkin and H. Gangl, Tame and wild kernels of quadratic imaginary number fields. Math. Comp. 68 (1999), no. 225, 291-305.
- [6] J. Coates, On K₂ and some classical conjectures in algebraic number theory. Ann. of Math. (2) 95 (1972), 99-116.
- [7] H, Garland, A finiteness theorem for K_2 of a number field. Ann. of Math. (2) 94 (1971), 534-548.
- [8] X. Guo and H. Qin, The extended Bloch groups of biquadratic and dihedral number fields, J. Pure Appl. Algebra 222 (2018) 3968-3981.
- [9] K. Iwasawa, On \mathbf{Z}_l -extensions of algebraic number fields. Ann. of Math. (2) 98 (1973), 246-326.
- [10] M. Kolster, K-theory and arithmetic. Contemporary developments in algebraic K-theory, 191–258, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004.
- [11] S. Lichtenbaum, On the values of zeta and L-functions. I. Ann. of Math. (2) 96 (1972), 338-360.
- [12] S. Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic K-theory. Algebraic K-theory, II: "Classical" algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 489-501. Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973.
- [13] B. Mazur and A. Wiles, Class fields of abelian extensions of Q. Invent. Math. 76 (1984), no. 2, 179-330.
- [14] D. Quillen, Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85-147. Lecture Notes in Math., Vol. 341, Springer, Berlin 1973.
- [15] D. Quillen, Finite generation of the groups K_i of rings of algebraic integers. Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 179-198. Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973.
- [16] J. Rognes and C. Weibel, Two-primary algebraic K-theory of rings of integers in number fields (Appendix A by M. Kolster).
 J. Amer. Math. Soc. 13 (2000), no. 1, 1-54.
- [17] C. L. Siegel, Advanced analytic number theory. Second edition. Tata Institute of Fundamental Research Studies in Mathematics, 9. Tata Institute of Fundamental Research, Bombay, 1980.
- [18] E. H. Spanier, Algebraic topology. reprint of the 1966 original. Springer-Verlag, New York, 1989.
- [19] C. Soulé, K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale. Invent. Math. 55 (1979), no. 3, 251-295.
- [20] V. Voevodsky, On motivic cohomology with Z/l-coefficients. Ann. of Math. (2) 174 (2011), no. 1, 401-438.
- [21] L. C. Washington, Introduction to cyclotomic fields. Second edition. Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997.
- [22] C. Weibel, The norm residue isomorphism theorem, J. Topol. 2 (2009), no. 2, 346-372.
- [23] C. Weibel, The K-book. An introduction to algebraic K-theory. Graduate Studies in Mathematics, 145. American Mathematical Society, Providence, RI, 2013. xii+618 pp.
- [24] A. Wiles, The Iwasawa conjecture for totally real fields. Ann. of Math. (2) 131 (1990), no. 3, 493-540.
- [25] D. Zagier, On the values at negative integers of the zeta-function of a real quadratic field. Enseign. Math. (2) 22 (1976), no. 1-2, 55-95.
- [26] H. Zhou, Tame kernels of cubic cyclic fields. Acta Arith. 124 (2006), no. 4, 293-313.
- [27] H. Zhou, The tame kernel of multiquadratic number fields, Commun. Alg. 37 (2009), no. 2, 630-638.

APPENDIX A. ALGORITHMS

This appendix provides algorithms for computing the size of higher even K-groups of ring of integers of totally real number fields. The algorithms are implemented in SageMath and are divided into two categories: those for quadratic fields, including Siegel formula-related computations and multi-quadratic field cases, and those for general number fields with Galois group isomorphic to $(\mathbb{Z}/p\mathbb{Z})^n$.

A.1. Quadratic Field Case. This section presents algorithms tailored for quadratic fields, including foundational computations, Siegel formula-related functions, and a method for combining K-group sizes across multiple quadratic fields. These algorithms compute the size of higher even K-groups and related quantities using modular forms, zeta functions, and prime products.

Algorithm 1 Computes the size of $K_n(\mathbb{Z})$

```
1: Input: Integer n
 2: Output: Absolute value of constant
 3: function KZ(n)
 4:
         if n \mod 8 = 2 then
 5:
                                                                                                                                    \triangleright Case: n \equiv 2 \pmod{8}
 6:
             Compute k \leftarrow (n-2)/8
 7:
             Compute s \leftarrow 2k+1
             Compute c \leftarrow \text{bernoulli}(2s) \cdot w(\mathbb{Q}, 1, 2s)/(4s)
 8:
 9:
             return |2c|
         else if n \mod 8 = 6 then
10:
11:
                                                                                                                                    \triangleright Case: n \equiv 6 \pmod{8}
12:
             Compute k \leftarrow (n-6)/8
13:
             Compute s \leftarrow 2k+2
             Compute c \leftarrow \text{bernoulli}(2s) \cdot w(\mathbb{Q}, 1, 2s)/(4s)
14:
15:
             return |c|
16:
         end if
17: end function
```

Algorithm 2 Compute $w_j(F)$

```
1: Input: Quadratic field K, integer i
 2: Output: Product of primes
 3: function W(K, i)
           Initialize empty list list1
 4:
 5:
                                                                                                                                                 \triangleright Collect primes where i/(\ell-1) \in \mathbb{Z}
 6:
           for \ell in primes(2, i+2) do
 7:
                if i/(\ell-1) \in \mathbb{Z} then
                     Append \ell to list1
 8:
 9:
                end if
10:
           end for
11:
           \text{Filter list1} \leftarrow \{\ell \in \text{list1} \mid \ell \neq 2\}
           Compute k \leftarrow 2i
12:
13:
           Initialize empty list list 2
14:
                                                                                                                                                                ▷ Collect additional primes
15:
           for \ell in primes(2, 2i + 2) do
16:
                 if k/(\ell-1) \in \mathbb{Z} and i/(\ell-1) \not\in \mathbb{Z} then
17:
                      Append \ell to list2
                 end if
18:
19:
           end for
20:
           Initialize prod \leftarrow 1
21:
                                                                                                                                                  ▷ Compute product for list1 primes
22:
           for \ell \in list1 do
23:
                 if i/\ell \not\in \mathbb{Z} then
24:
                      \operatorname{prod} \leftarrow \operatorname{prod} \cdot \ell
25:
                      \operatorname{prod} \leftarrow \operatorname{prod} \cdot \ell^{\operatorname{valuation}(i,\ell) + 1}
26:
27:
                 end if
28:
           end for
           \operatorname{prod} \leftarrow \operatorname{prod} \cdot 2^{\operatorname{valuation}(i,2) + 2}
29:
30:
                                                                                                                                                  \triangleright Adjust for specific quadratic fields
           for \ell \in \mathrm{list2} do
31:
32:
                 if K = \mathbb{Q}(\sqrt{\ell}) then
                      \operatorname{prod} \leftarrow \operatorname{prod} \cdot \ell^{\operatorname{valuation}(i,\ell) + 1}
33:
34:
                 end if
35:
           end for
36:
           if K = \mathbb{Q}(\sqrt{2}) or K = \mathbb{Q}(\sqrt{8}) then
37:
                 \operatorname{prod} \leftarrow 2 \cdot \operatorname{prod}
38:
           end if
39:
           \mathbf{return} \,\, \mathrm{prod} \,\,
40: end function
```

Algorithm 3 Compute $T_h = G_{12r-h+2}\Delta^{-r}$

```
1: Input: Integer h
2: Output: Modular form T
3: function T(h)
        if h \mod 12 = 2 then
5:
            Compute r \leftarrow \lfloor h/12 \rfloor
6:
        _{
m else}
7:
            Compute r \leftarrow \lfloor h/12 \rfloor + 1
        end if
8:
9:
        Compute k \leftarrow 12r - h + 2
        if k = 0 then
10:
11:
            Compute T \leftarrow \Delta^{-r}
12:
            Compute Eisenstein series G \leftarrow eisenstein series qexp(k, r+1, normalization='constant')
13:
            Compute T \leftarrow G \cdot \Delta^{-r}
14:
        end if
15:
16:
        return T + O(q)
17: end function
```

Algorithm 4 Compute Siegel coefficients $b_i(h)$

```
1: Input: Integers l, h
2: Output: Ratio of modular form coefficients
3: function B(l,h)
4: Compute modular form T \leftarrow T(h)
5: Extract coefficients C \leftarrow T.coefficients()
6: Compute length L \leftarrow |C|
7: return -C[L-l-1]/C[L-1]
8: end function
```

Algorithm 5 Compute Siegel Sum

```
1: Input: Integer D, exponent j
 2: Output: Sum of divisors raised to power j
 3: function ESIEGEL(D, j)
         Initialize haha \leftarrow 0
          Initialize bla \leftarrow 0
 5:
 6:
         if D/4 \in \mathbb{Z} then
                                                                                                                                            \triangleright Sum over divisors of D/4
 7:
 8:
              for each i \in \text{divisors}(\lfloor D/4 \rfloor) do
                   \mathbf{haha} \leftarrow \mathbf{haha} + i^j
 9:
10:
              end for
          end if
11:
12:
                                                                                                                       \triangleright Sum over divisors for quadratic residues
          for b in [1, \lfloor \sqrt{D} \rfloor] do
13:
14:
              if (D-b^2)/4 \in \mathbb{Z} then
                   for each i \in \text{divisors}(\lfloor (D - b^2)/4 \rfloor) do
15:
                        \mathbf{bla} \leftarrow \mathbf{bla} + i^j
16:
17:
                   end for
               end if
18:
19:
          end for
20:
          \textbf{return} \ haha + 2 \cdot bla
21: end function
```

Algorithm 6 Compute Weighted Sum with Kronecker Symbol

```
1: Input: Quadratic field F, integers l, m
 2: Output: Weighted sum
 3: function S(F, l, m)
         Compute discriminant D \leftarrow F.discriminant()
 4:
 5:
         Initialize sum \leftarrow 0
 6:
                                                                                                                                          \triangleright Sum over divisors of l
 7:
         for each j \in \text{divisors}(l) do
             \textbf{Compute sum} \leftarrow \textbf{sum} + \textbf{kronecker\_symbol}(D,j) \cdot j^{2m-1} \cdot \textbf{eSiegel}((l/j)^2 \cdot D, 2m-1)
 8:
9:
         end for
         \mathbf{return} \ \mathrm{sum}
11: end function
```

Algorithm 7 Compute Zeta Function Value for Quadratic Field

```
1: Input: Discriminant D, complex number s
2: Output: Zeta function value
3: function \operatorname{Zeta}(D,s)
         Create quadratic field F \leftarrow \mathbb{Q}(\sqrt{D})
         Set r \leftarrow 2
5:
         Compute k \leftarrow (1-s)/2
6:
7:
         \mathbf{if}\ kr\ \bmod 6 = 1\ \mathbf{then}
8:
             Compute c \leftarrow \lfloor kr/6 \rfloor
9:
         else
              Compute c \leftarrow \lfloor kr/6 \rfloor + 1
10:
11:
         end if
12:
         Initialize sum \leftarrow 0
                                                                                                                                              \triangleright Sum over coefficients
13:
14:
         for j in [1, c] do
              Compute sum \leftarrow sum + b(j, 2kr) \cdot S(F, j, k)
15:
16:
         end for
         \textbf{return} \ 2^r \cdot \text{sum}
17:
18: end function
```

Algorithm 8 Compute size of K-group of Quadratic Field

```
1: Input: Quadratic field K, integer n
 2: Output: Rounded K-group size
 3: function KSIZE(K, n)
         Compute degree r \leftarrow K.degree()
         Compute discriminant D \leftarrow K.discriminant()
 5:
 6:
         if n \mod 2 = 0 then
             Compute k \leftarrow (n+2)/4
 7:
 8:
             if k \mod 2 = 0 then
 9:
                                                                                                                                                     \triangleright Even k
10:
                 Compute SS \leftarrow (1/2^r) \cdot w(K, 2k) \cdot \text{Zeta}(D, 1 - 2k)
11:
             else
12:
                                                                                                                                                      \triangleright Odd k
                 Compute SS \leftarrow (-1)^r \cdot w(K, 2k) \cdot \text{Zeta}(D, 1 - 2k)
13:
14:
             end if
15:
         else
16:
             Compute k \leftarrow (n+1)/4
17:
             if k \mod 2 = 0 then
18:
                                                                                                                                                     \triangleright Even k
19:
                 Compute SS \leftarrow w(K, 2k)
20:
             else
21:
                                                                                                                                                      {\,\vartriangleright\,}\operatorname{Odd}\, k
22:
                 Compute SS \leftarrow 2^r \cdot w(K, 2k)
23:
             end if
24:
         end if
         return round(SS)
25:
26: end function
```

Algorithm 9 Compute the size of K-group Size for multi-quadratic Fields

```
1: Input: List of quadratic fields list1, list of conductors list2, integer n
2: Output: Combined K-group size
3: function MultiSize(list1, list2, n)
4:
        Initialize prod \leftarrow 1
        Compute degree p \leftarrow \text{list1}[0].\text{degree}()
5:
        Set k \leftarrow 3
                                                                                                                         ▷ Assumes Galois group degree
6:
7:
                                                                                                                  ▷ Compute product of K-group sizes
        for i in [0, |list 1| - 1] do
8:
             \textbf{Compute prod} \leftarrow \textbf{prod} \cdot \textbf{KSize}(\textbf{list1}[i], \textbf{list2}[i], n)
9:
10:
        end for
        Compute denominator denominator \leftarrow \mathrm{KZ}(n)^{(p^k-p)/(p-1)}
11:
12:
        return prod/denominator
13: end function
```

 ${\bf Purpose} :$ Computes the combined K-group size for a list of quadratic fields.

A.2. **General Number Field Case.** This section presents algorithms for computing K-group sizes for general number fields, particularly those with Galois group $(\mathbb{Z}/p\mathbb{Z})^{\oplus n}$. These algorithms handle subfield checks, prime products, zeta functions, and K-group computations for arbitrary degrees.

Algorithm 10 Check if K is a Subfield of L

- 1: Input: Number fields K, L
- 2: Output: Boolean indicating if $K \subseteq L$
- 3: function $is_subfield(K, L)$
- 4: Compute embeddings $\operatorname{Emb}(K, L)$ of K into L
- 5: $\operatorname{\mathbf{return}} |\operatorname{Emb}(K, L)| > 0$
- 6: end function

Algorithm 11 Compute $w_i(F)$ for a random totally real field F, based on Proposition 4.2

```
1: Input: Number field K, conductor cond, integer i
 2: Output: Product of prime powers
 3: function W(K, cond, i)
            Compute degree r \leftarrow \deg(K)
 4:
            Initialize empty list list1
 5:
 6:
                                                                                                                                             \triangleright Collect primes where i \mod (\ell - 1) = 0
           for \ell in prime_range(2, i+2) do
 7:
                 if i \mod (\ell - 1) = 0 then
 8:
 9:
                      Append \ell to list1
10:
                 end if
11:
            end for
            Initialize prod \leftarrow 1
12:
            if K = \mathbb{Q}(\sqrt{2}) then
13:
                                                                                                                                                                                 \triangleright Case: K = \mathbb{Q}(\sqrt{2})
14:
15:
                 for \ell \in list1 do
                      \operatorname{prod} \leftarrow \operatorname{prod} \cdot \ell^{1 + \operatorname{valuation}(4i, \ell)}
16:
17:
                 end for
18:
            else if r is odd and K \subseteq \text{CyclotomicField}(r^2) then
19:
                                                                                                                                          ▷ Case: Odd degree and cyclotomic subfield
20:
                 for \ell \in list1 do
                       \operatorname{prod} \leftarrow \operatorname{prod} \cdot \ell^{1 + \operatorname{valuation}(2ri, \ell)}
21:
22:
                 end for
23:
            else if cond is prime and K \subseteq \text{CyclotomicField(cond)} then
                                                                                                                                      \triangleright Case: Cyclotomic field with prime conductor
24:
                 list2 \leftarrow \{\ell \in list1 \mid \ell \neq 2, \ell \neq cond\}
25:
26:
                 for \ell \in list2 do
                       \operatorname{prod} \leftarrow \operatorname{prod} \cdot \ell^{1 + \operatorname{valuation}(i/2, \ell)}
27:
28:
                 end for
                 if (i \cdot r) \mod (\operatorname{cond} - 1) = 0 then
29:
                       \operatorname{prod} \leftarrow \operatorname{prod} \cdot 2^{3 + \operatorname{valuation}(i/2, 2)} \cdot \operatorname{cond}^{1 + \operatorname{valuation}(i/2, \operatorname{cond})}
30:
31:
                       \operatorname{prod} \leftarrow \operatorname{prod} \cdot 2^{3 + \operatorname{valuation}(i/2, 2)}
32:
33:
                 end if
34:
            else
35:
                                                                                                                                                                                          \triangleright Default case
36:
                 for \ell \in \mathrm{list1} do
                      \operatorname{prod} \leftarrow \operatorname{prod} \cdot \ell^{1 + \operatorname{valuation}(2i, \ell)}
37:
                 end for
38:
39:
            end if
            \mathbf{return} \,\, \mathrm{prod} \,\,
40:
41: end function
```

Algorithm 12 Compute Zeta Function Value for Number Field with $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/p\mathbb{Z}$

```
1: Input: Number field K, conductor cond, complex number s
 2: Output: Zeta function value
 3: function ZETA(K, cond, s)
 4:
         Compute n \leftarrow 1-s
 5:
         Compute degree \deg \leftarrow K.\deg()
 6:
         Create Dirichlet group G \leftarrow \text{DirichletGroup}(\text{cond})
 7:
         Initialize Lval \leftarrow 1
         if deg = 2 then
 8:
 9:
                                                                                                                                             \,\triangleright Quadratic field case
10:
              \label{eq:compute_loss} \mbox{Compute Lval} \leftarrow -\mbox{QuadraticBernoulliNumber}(n,\mbox{cond})/n
11:
         else
12:
                                                                                                                                              \triangleright General degree case
              Compute character \chi \leftarrow G.0^{(G.\mathrm{order}()/\deg)}
13:
              for i in [1, \deg -1] do
14:
15:
                  \text{Compute Lval} \leftarrow \text{Lval} \cdot \left(-(\chi^i).\text{bernoulli}(n)/n\right)
16:
              end for
17:
         end if
         return \zeta(s) \cdot \text{Lval}
18:
19: end function
```

Algorithm 13 Compute the size of K-groups for Number Field with $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/p\mathbb{Z}$

```
1: Input: Number field K, conductor cond, integer n
 2: Output: Rounded K-group size
 3: function KSIZE(K, cond, n)
         Compute degree r \leftarrow K.\text{degree}()
 4:
 5:
         if n \mod 2 = 0 then
 6:
             Compute k \leftarrow (n+2)/4
 7:
              if k \mod 2 = 0 then
                                                                                                                                                             \triangleright Even k
 8:
 9:
                  Compute SS \leftarrow (1/2^r) \cdot w(K, \text{cond}, 2k) \cdot \text{Zeta}(K, \text{cond}, 1 - 2k)
10:
              else
11:
                                                                                                                                                              \triangleright Odd k
                  Compute SS \leftarrow (-1)^r \cdot w(K, \text{cond}, 2k) \cdot \text{Zeta}(K, \text{cond}, 1 - 2k)
12:
13:
              end if
14:
         else
              Compute k \leftarrow (n+1)/4
15:
16:
              if k \mod 2 = 0 then
17:
                                                                                                                                                             \triangleright Even k
                  Compute SS \leftarrow w(K, \text{cond}, 2k)
18:
19:
              _{
m else}
                                                                                                                                                              {\,\vartriangleright\,}\operatorname{Odd}\, k
20:
21:
                  Compute SS \leftarrow 2^r \cdot w(K, \text{cond}, 2k)
22:
23:
         end if
24:
         return round(SS)
25: end function
```

Algorithm 14 Compute Scaled Value for K-group

```
1: Input: Number field K, conductor cond, integer n
2: Output: Scaled rational value
3: function OMG(K, cond, n)
4:
        Compute degree r \leftarrow \deg(K)
5:
        Compute k \leftarrow \lfloor (n+2)/4 \rfloor
        if k is even then
6:
7:
                                                                                                                                              \triangleright Even case
            Compute SS \leftarrow w(K, \text{cond}, 2k)/2^r
8:
9:
        else
10:
                                                                                                                                               ▷ Odd case
11:
             Compute SS \leftarrow (-1)^r \cdot w(K, \text{cond}, 2k)
12:
        end if
13:
        return \mathbb{Q}(\mathbb{R}(SS))
14: end function
```

Algorithm 15 Compute Size of Higher Even K-groups

```
1: Input: Number field K, conductor cond, prime p, integers k, n
 2: Output: Size of K-group
 3: function KSIZEPPOWER(K, \text{cond}, p, k, n)
          Compute degree r \leftarrow \deg(K)
          Compute a \leftarrow \lfloor (n+2)/4 \rfloor
 5:
 6:
          Create Dirichlet group G \leftarrow \text{DirichletGroup}(\text{cond})
          \textbf{Collect characters} \leftarrow \{\chi \in G \mid \chi.\textbf{multiplicative\_order}() \in \{1, p\}\}
 7:
 8:
          \textbf{Compute subfields Subfields} \leftarrow K. \textbf{subfields}()
          Initialize empty list inter
 9:
10:
                                                                                                                                      \triangleright Collect subfields of degree p
          for each subfield S \in \text{Subfields do}
11:
12:
              if deg(S) = p then
13:
                   Append S to inter
14:
              end if
15:
          end for
16:
          Initialize prod \leftarrow 1
17:
                                                                                                                                                 ▷ Compute Zeta value
18:
          for each \chi \in \text{characters do}
19:
              \texttt{prod} \leftarrow \texttt{prod} \cdot (-\chi.\texttt{primitive\_character}().\texttt{bernoulli}(2a)/(2a))
20:
          end for
          \operatorname{prod} \leftarrow \operatorname{prod} \cdot \zeta(1 - 2a)^{|\operatorname{inter}| - 1}
21:
22:
          Initialize ww \leftarrow 1
23:
                                                                                                                                       \triangleright Compute product of w_i(F)
24:
          for each i \in \text{inter do}
25:
              ww \leftarrow ww \cdot \text{OMG}(i, i.\text{conductor}(), n)
26:
27:
                                                                                                                                              ▷ Compute denominator
          denominator \leftarrow KZ(n)^{(p^k-p)/(p-1)}
28:
29:
          return prod \cdot ww/denominator
30: end function
```

A.3. KSizeppower(K, cond, p, k, n).

APPENDIX B. EXAMPLES

This appendix introduces three methods for computing the size of higher even K-groups, each tailored to specific types of number fields. The major distinction among these methods lies in how the special values of the Dedekind zeta function are computed. While software like SageMath and Magma provide built-in functions for numerical approximations of these values, we aim to compute them exactly as fractions. The first method is designed for fields whose degrees are p-powers, leveraging their specific arithmetic structures. The second method applies to fields of higher degree or those whose degrees are not p-powers, where the associated Dirichlet character must be manually input from the LMFDB to ensure precise fractional computation. Finally, for the quadratic case, we provide a simplified approach using Siegel's formula and also offer a faster method to calculate $w_j(F)$, enhancing efficiency while maintaining exactness. Together, these methods form a comprehensive framework for rigorously determining K-group sizes across various field types.

The first method is the most general and theoretically works for every totally real abelian number field. The primary difference from the first method lies in the computation of the Dedekind zeta function, where the associated Dirichlet character must be manually input from the LMFDB to obtain the special values. While this generality ensures broad applicability, the computation of $w_j(F)$ can become significantly slower as the degree of the field increases, due to the amplified complexity and computational effort required. To illustrate this method, we include an example of computing the Dedekind zeta value for a degree 21 field, highlighting both its flexibility and the challenges posed by high-degree fields.

```
LISTING 1. Computing special value of Dedekind Zeta function for \mathbb{Q}(x^{21} - 7x^{20} - 70x^{19} + 462x^{18} + 2135x^{17} - 12411x^{16} - 36610x^{15} + 175044x^{14} + 373940x^{13} - 1403661x^{12} - 2218069x^{11} + 6566007x^{10} + 6982234x^9 - 17907827x^8 - 9448729x^7 + 26548844x^6 + 686581x^5 - 16732429x^4 + 5281647x^3 + 1717044x^2 - 573440x - 71167)
```

```
1 from sage.modular.dirichlet import DirichletCharacter
    = DirichletGroup(637, base_ring=CyclotomicField(2))
  M = H._module
6
  chi1 = DirichletCharacter(H, M([0,0]))
  from sage.modular.dirichlet import DirichletCharacter
9
  H = DirichletGroup(637, base_ring=CyclotomicField(42))
11
13
  M = H._module
  chi2 = DirichletCharacter(H, M([6,28]))
  from sage.modular.dirichlet import DirichletCharacter
17
18
  H = DirichletGroup(637, base_ring=CyclotomicField(14))
19
20
  M = H._module
21
22
  chi3 = DirichletCharacter(H, M([10,0]))
```

```
25 from sage.modular.dirichlet import DirichletCharacter
26
27 H = DirichletGroup(637, base_ring=CyclotomicField(6))
28
29 M = H._module
31 chi4 = DirichletCharacter(H, M([0,2]))
32
33 from sage.modular.dirichlet import DirichletCharacter
34
35 H = DirichletGroup(637, base_ring=CyclotomicField(42))
36
37 M = H._module
38
39 chi5 = DirichletCharacter(H, M([36,28]))
40
41 from sage.modular.dirichlet import DirichletCharacter
42
43 H = DirichletGroup(637, base_ring=CyclotomicField(42))
44
45 M = H. module
46
47 chi6 = DirichletCharacter(H, M([24,14]))
48
49 from sage.modular.dirichlet import DirichletCharacter
50
51 H = DirichletGroup(637, base_ring=CyclotomicField(14))
53 M = H._module
54
55 chi7 = DirichletCharacter(H, M([6,0]))
56
57 from sage.modular.dirichlet import DirichletCharacter
58
59 H = DirichletGroup(637, base_ring=CyclotomicField(42))
60
61 M = H._module
62
63 chi8 = DirichletCharacter(H, M([30,14]))
64
65 from sage.modular.dirichlet import DirichletCharacter
67 H = DirichletGroup(637, base_ring=CyclotomicField(42))
68
```

```
69 M = H._module
70
71 chi9 = DirichletCharacter(H, M([24,28]))
72
73 from sage.modular.dirichlet import DirichletCharacter
75 H = DirichletGroup(637, base_ring=CyclotomicField(14))
77 M = H._module
78
79 chi10 = DirichletCharacter(H, M([2,0]))
80
81 from sage.modular.dirichlet import DirichletCharacter
82
83 H = DirichletGroup(637, base_ring=CyclotomicField(42))
84
85 M = H._module
86
87 chi11 = DirichletCharacter(H, M([12,28]))
88
89 from sage.modular.dirichlet import DirichletCharacter
90
91 H = DirichletGroup(637, base_ring=CyclotomicField(14))
92
93 M = H._module
94
95 chi12 = DirichletCharacter(H, M([12,0]))
97 from sage.modular.dirichlet import DirichletCharacter
99 H = DirichletGroup(637, base_ring=CyclotomicField(42))
100
101 M = H._module
103 chi13 = DirichletCharacter(H, M([6,14]))
104
105 from sage.modular.dirichlet import DirichletCharacter
106
107 H = DirichletGroup(637, base_ring=CyclotomicField(6))
108
109 M = H._module
chi14 = DirichletCharacter(H, M([0,4]))
112
```

```
113 from sage.modular.dirichlet import DirichletCharacter
114
115 H = DirichletGroup(637, base_ring=CyclotomicField(14))
116
117 M = H._module
chi15 = DirichletCharacter(H, M([8,0]))
120
121
   from sage.modular.dirichlet import DirichletCharacter
122
123 H = DirichletGroup(637, base_ring=CyclotomicField(42))
124
125 M = H._module
126
127 chi16 = DirichletCharacter(H, M([36,14]))
128
129 from sage.modular.dirichlet import DirichletCharacter
130
H = DirichletGroup(637, base_ring=CyclotomicField(42))
132
133 M = H. module
134
135 chi17 = DirichletCharacter(H, M([18,14]))
136
137 from sage.modular.dirichlet import DirichletCharacter
138
H = DirichletGroup(637, base_ring=CyclotomicField(42))
141 M = H._module
142
143 chi18 = DirichletCharacter(H, M([30,28]))
144
145 from sage.modular.dirichlet import DirichletCharacter
146
H = DirichletGroup(637, base_ring=CyclotomicField(14))
148
149 M = H._module
151 chi19 = DirichletCharacter(H, M([4,0]))
152
153 from sage.modular.dirichlet import DirichletCharacter
154
155 H = DirichletGroup(637, base_ring=CyclotomicField(42))
156
```

```
157 M = H._module
158
   chi20 = DirichletCharacter(H, M([18,28]))
159
160
   from sage.modular.dirichlet import DirichletCharacter
161
   H = DirichletGroup(637, base_ring=CyclotomicField(42))
165 M = H._module
166
   chi21 = DirichletCharacter(H, M([12,14]))
167
169
170
171
   CHI = [chi1,chi2,chi3, chi4, chi5, chi6, chi7,chi8,chi9, chi10, chi11, chi12, chi13, chi14,
       chi15, chi16, chi17, chi18, chi19, chi20, chi21]
174 CChi = []
175 for i in CHI:
     CChi.append(i.primitive_character())
177
178 prod =1
179
180 for i in CChi:
   prod*=-i.bernoulli(2)/2
```

For quadratic fields, we employ Siegel's formula to compute the special values of the Dedekind zeta function. Furthermore, we introduce a faster method to compute $w_j(F)$, optimizing the process while maintaining the accuracy required to determine the sizes of the K groups. This specialized approach significantly improves computational efficiency in the quadratic case.

LISTING 2. Computing special value of Dedekind Zeta function using Siegel's formula

```
Computes a modular form T(h) based on Delta and Eisenstein series of various weights.
13
      :param h: Integer, typically the weight of the modular form.
      :return: A q-expansion of the modular form T(h).
15
16
      if Mod(h, 12) == 2:
          r = floor(h / 12)
      else:
20
     r = floor(h / 12) + 1
21
      k = 12 * r - h + 2 # Compute the required weight for the Eisenstein series
22
     if k == 0:
23
          T = Delta^(-r) # Case where k = 0, use only powers of Delta
24
25
          G = eisenstein_series_qexp(k, r + 1, normalization='constant')  # Eisenstein series of
     weight k
27
     T = G * Delta^(-r) # Combine with Delta
    return T + O(q) # Return the truncated q-expansion
30
31 def b(1, h):
32
      Compute the normalized coefficient b_j(h).
33
     :param 1: Index of the coefficient to retrieve.
34
      :param h: Weight parameter for T(h).
35
      :return: thew value of b_j(h).
36
37
      C = T(h).coefficients() # Get coefficients of T(h)
      L = len(C) # Total number of coefficients
      return -C[L - 1 - 1] / C[L - 1] # Return normalized coefficient
40
41
42 def eSiegel(D, j):
43
      Computes the Siegel-type divisor sum for a given discriminant D and exponent j.
44
      :param D: Discriminant.
45
      :param j: Exponent for the divisor function.
46
      :return: Siegel sum value.
47
      haha = 0
      bla = 0
50
51
      # Compute first term where D/4 is an integer
52
     if D / 4 in ZZ:
      for i in divisors(round(D / 4)):
54
              haha += i^j
55
```

```
56
      # Compute second term for values b where (D - b^2)/4 is an integer
     for b in range(1, floor(sqrt(D)) + 1):
     if (D - b^2) / 4 in ZZ:
59
        for i in divisors(round((D - b^2) / 4)):
        bla += i^j
62
63
    return haha + 2 * bla
64
65 def S(F, 1, m):
66
      Computes a sum involving Kronecker symbols and Siegel sums for a field F.
67
    :param F: A quadratic field.
68
     :param 1: Integer parameter.
69
   :param m: Integer parameter.
70
71
      :return: The computed sum.
    sum = 0
      D = F.discriminant() # Discriminant of the quadratic field
75
      # Iterate over divisors of 1
76
      for j in divisors(1):
77
         sum += kronecker_symbol(D, j) * j^2 = 1 * eSiegel((1 / j)^2 * D, 2 * m - 1)
78
79
    return sum
80
81
82 def Zeta(D, s):
     Computes a zeta-like function for a totally real quadratic field with discriminant D
   :param D: Discriminant of the quadratic field.
85
86
    :param s: An integer parameter.
   :return: Zeta value.
87
88
      F = QuadraticField(D) # Create the quadratic field
89
      r = 2 # Degree of the field (always 2 for quadratic fields)
90
      k = (1 - s) / 2 # Parameter derived from s
91
      # Determine the range for summation based on k*r modulo
     if Mod(k * r, 6) == 1:
95
          c = floor(k * r / 6)
    else:
    c = floor(k * r / 6) + 1
97
98
    sum = 0
99
```

```
100
       # Compute Dedekind zeta function as in Theorem 4.1
101
       for j in range (1, c + 1):
102
         sum += b(j, 2 * k * r) * S(F, j, k)
103
       return 2^r * sum # Multiply by 2^r and return the result
107
108
109
110 def w(K, i):
111
       Computes w_j(F) for real quadratic fields.
112
       :param K: A number field, typically quadratic.
113
       :param i: An integer parameter used to determine specific properties of the primes
114
115
       :return: w_j(F).
       list1 = []
117
118
       # Collect primes satisfying (i / (ell - 1)) in {\tt Z}
119
       for ell in list(primes(2, i + 2)):
120
           if (i / (ell - 1)) in ZZ:
121
               list1.append(ell)
122
123
       # Remove 2 from list1 to handle it separately
124
       list1 = [ell for ell in list1 if ell != 2]
       # Determine additional primes based on k = 2 * i and specific divisibility criteria
       k = 2 * i
128
       list2 = []
129
       for ell in list(primes(2, 2 * i + 2)):
130
           if (k / (ell - 1)) in ZZ and (i / (ell - 1)) not in ZZ:
131
               list2.append(ell)
132
133
       # Compute the product based on the properties of list1 and list2
134
       prod = 1
135
       for ell in list1:
          if (i / ell) not in ZZ:
               prod *= ell # Multiply by prime
139
           else:
               prod *= ell**(i.valuation(ell) + 1)  # Adjust power based on valuation
140
141
       # Handle the contribution from 2 separately
142
       prod *= 2**(i.valuation(2) + 2)
143
```

```
144
       # Additional adjustment for primes in list2
145
       for ell in list2:
146
           if K == QuadraticField(ell): # Check if K matches a specific quadratic field
147
               prod *= ell**(i.valuation(ell) + 1)
148
149
       # Adjust for special cases where K is QuadraticField(2) or QuadraticField(8)
       if K == QuadraticField(2) or K == QuadraticField(8):
           prod = 2 * prod
153
154
       return prod
156
   def KSize(K, n):
157
158
       Computes the size of higher even K-groups for the field K and parameter
159
       :param K: A number field.
160
       :param n: An integer parameter related to the K-group.
       :return: The computed size as an integer.
163
       r = K.degree() # Degree of the field
164
       D = K.discriminant() # Discriminant of the field
165
166
       # Case when n is even
167
       if n % 2 == 0:
168
           k = (n + 2) // 4
169
            if k \% 2 == 0: # k is even
170
                SS = (1 / (2^r)) * w(K, 2 * k) * Zeta(D, 1 - 2 * k)
171
            else: # k is odd
                SS = (-1)^r * w(K, 2 * k) * Zeta(D, 1 - 2 * k)
174
       # Case when n is odd
175
       else:
176
           k = (n + 1) // 4
177
            if k % 2 == 0: # k is even
178
                SS = w(K, 2 * k)
179
            else: # k is odd
180
                SS = 2^r * w(K, 2 * k)
181
       return round(SS) # Return the rounded result
```

For p-elementary abelian totally real fields, our code leverages the specific arithmetic properties of these fields to compute the size of higher even K-groups efficiently, directly utilizing the structured relationship between the field and its Dedekind zeta function.

LISTING 3. Code for computing size of higher even K-groups

```
2 def is_subfield(K, L):
      Checks if K is a subfield of L by verifying the existence of embeddings.
      :param K: A number field or similar algebraic structure.
      :param L: A number field into which embeddings are checked.
      :return: True if K embeds into L, otherwise False.
      return len(K.embeddings(L)) > 0
9
10
11
12 #Computes w_i(K) based on Propsition 4.2
13 def w(K, cond, i):
14
      Computes a weighted product of prime powers for a given number field and conditions
      :param K: A number field.
16
      :param cond: An integer condition, e.g., conductor of a field.
      :param i: An integer parameter used in the calculations.
18
      :return: A product based on certain arithmetic properties of K and i.
19
20
21
      r = K.degree() # Degree of the number field K.
      list1 = []
      # Collecting primes that satisfy specific congruence properties.
24
      for ell in prime_range(2, i + 2):
          if i % (ell - 1) == 0:
26
              list1.append(ell)
27
28
      prod = 1
29
30
      # Case 1: K is a subfield of QuadraticField(2) and QuadraticField(8)
31
      if is_subfield(QuadraticField(2), K) and is_subfield(K, QuadraticField(8)):
32
          for ell in list1:
              prod *= ell ** (1 + (4 * i).valuation(ell))
35
      # Case 2: K is related to a CyclotomicField of degree r^2
      elif r % 2 == 1 and cond == r ** 2:
          for ell in list1:
38
              prod *= ell ** (1 + (2 * r * i).valuation(ell))
39
40
      # Case 3: K is related to a CyclotomicField of a prime conductor
41
      elif s_prime(cond) and cond % 2 == 1:
42
         list2 = [ell for ell in list1 if ell != 2 and ell != cond]
```

```
for ell in list2:
  prod *= ell ** (1 + (i / 2).valuation(ell))
     if (i * r) % (cond - 1) == 0:
  prod = 2 ** (3 + (i / 2).valuation(2)) * cond ** (1 + (i / 2).valuation(cond)) *
     prod
   else:
      prod = 2 ** (3 + (i / 2).valuation(2)) * prod
    # Default case
51
    else:
    for ell in list1:
       prod *= ell ** (1 + (2 * i).valuation(ell))
54
55
    return prod
56
57
59 #The following function computes the special value of the Dedekind Zeta function for number
     field K.
60 #But in this case, it only deals with the fields with p degrees.
61 #We also have a general version which deals with any fields. (see appendix xxx)
62 def Zeta(K, cond, s):
63
  Computes a modified zeta function for the number field K.
64
  :param K: A number field.
65
     :param cond: An integer condition, typically related to the field's conductor.
66
  :param s: A negative integer.
67
     :return: The special value of Dedekind Zeta fucntion of K.
     n = 1 - s
     deg = K.degree() # Degree of the field.
71
     G = DirichletGroup(cond)
     Lval = 1
73
74
   if deg == 2:
75
  Lval = -QuadraticBernoulliNumber(n, cond) / n
76
     else:
77
    chi = G.0^(ZZ(G.order() / deg))
      for i in (1..deg - 1):
      Lval *= (-(chi^i).bernoulli(n) / n)
    return zeta(s) * Lval
84
85
```

```
86 #Computes the size of even K group of ring of integers of the field K using Theorem 2.3 and
       Corollary 2.4.
87 def KSize(K, cond, n):
88
89
       Computes the size of even K group of ring of integers of the field K.
       :param K: A number field K.
       :param cond: An integer condition, typically a conductor.
       :param n: An integer parameter.
       :return: The computed size.
93
94
       r = K.degree()
95
96
97
       if n % 2 == 0:
           k = (n + 2) // 4
98
         if k % 2 == 0:
99
100
               SS = 1 / (2**r) * w(K, cond, 2 * k) * Zeta(K, cond, 1 - 2 * k)
101
               SS = (-1)**r * w(K, cond, 2 * k) * Zeta(K, cond, 1 - 2 * k)
       else:
           k = (n + 1) // 4
104
           if k % 2 == 0:
105
               SS = w(K, cond, 2 * k)
106
           else:
               SS = 2**r * w(K, cond, 2 * k)
108
109
       return round(SS)
110
111
113 #This function computes size of even K groups of Z, which appeared in Theorem 4.1.
114 def KZ(n):
115
       Computes size of even K groups of Z, which appeared in Theorem 4.1.
116
       :param n: An integer.
117
       :return: A scaling factor based on Bernoulli numbers and prime valuations.
118
119
       ZZ = IntegerRing()
120
       if n % 8 == 2:
122
           k = ZZ((n - 2) / 8)
123
           s = 2 * k + 1
124
           c = bernoulli(2 * s) * w(QQ, 1, 2 * s) / (4 * s)
125
           return abs(2 * c)
126
       elif n % 8 == 6:
127
           k = ZZ((n - 6) / 8)
128
```

```
s = 2 * k + 2
129
           c = bernoulli(2 * s) * w(QQ, 1, 2 * s) / (4 * s)
130
           return abs(c)
131
132
133
134 #If E is a totally real Galois extension of Q and Galois group is p-elementary,
135 #then given a list of intermediate field of E and a list of associated conductors of these
       intermediate fields.
136 #We can compute the size of even K groups of ring of integers of E by the formula in Theorem
       4.1.
137 def MultiSize(list1, list2, n):
138
       Computes a combined size metric over multiple fields and conditions.
139
       :param list1: A list of intermediate fields.
140
       :param list2: A list of conductors corresponding to the intermediate fields.
141
       :param n: An integer n=2k.
142
       :return: Size of the K-group for number field E.
143
       p = list1[0].degree() # Degree of the first field.
146
       k = 2 # Degree from Galois group.
147
148
       # Compute the product of sizes for each field in the list.
149
       for i in range(len(list1)):
150
           prod *= KSize(list1[i], list2[i], n)
151
152
       # Normalize by a scaling factor.
      return prod / (KZ(n)**((p**k - p) // (p - 1)))
```

School of Mathematics and Statistics, Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, P.R.China.

Email address: limmf@ccnu.edu.cn

 $\begin{tabular}{ll} College of Mathematical Sciences, Harbin Engineering University, Harbin, 150001, P.R. China. \\ {\it Email address: qinchao@hrbeu.edu.cn} \end{tabular}$